The Journal of Nutritional Biochemistry, 110, 109147, 2022
Friday, 30 September 2022
Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids- a comprehensive update
Monday, 26 September 2022
Biological Functions and Utilization of Different Part of the Papaya: A Review
Papaya is one of the most important fruit trees cultivated throughout the tropical and subtropical regions and its production is rising worldwide. Its edible part has a high nutritional and sensory value and a great commercial potential. Mature papaya is consumed fresh and has been used in food processing and cosmetic industries. Along with some other parts such as leaves, seeds or skin, papaya has been used in traditional medicine in various countries. In fact, numerous studies have reported the presence of bioactive compounds with diverse biological properties in the papaya by-products, which has motivated the expansion of their applications. Papaya by-products have been demonstrated to exert a wide range of activities (e.g.; antioxidant, anti-cancer, anti-dengue, anti-malarial, anti-fertility, diabetes prevention, insecticidal, anti-AIDS) that could be useful in pharmaceutical industry. They could be used in food industry, as a source of functional compounds and in innovative active packaging strategies, and in different cosmetic products, among other applications. Although this scenario indicates that the papaya industry could diversify and increase its economic value, there are two problems that significantly affect it: the spread of pathogens and the highly perishable nature of this fruit. On the one hand, genetic tools have been used to obtain transgenic varieties resistant to pathogens, while new preservation technologies have been explored. This review focuses on the main bioactive compounds, important physiological functions and applications of different papaya parts and also in the current development of genetically modified papaya in the industry and the research progress on storage and preservation.
Thursday, 22 September 2022
Polyphenols as possible alternative agents in chronic fatigue: a review
Friday, 16 September 2022
Enrichment of gamma-aminobutyric acid in foods: From conventional methods to innovative technologies
Food Res. Int. 162, Part A, 111801, 2022
Wednesday, 14 September 2022
Himalayan Wild Fruits as a Strong Source of Nutraceuticals, Therapeutics, Food and Nutrition Security
Tuesday, 13 September 2022
Single-Cell Proteins Obtained by Circular Economy Intended as a Feed Ingredient in Aquaculture
The constant increment in the world’s population leads to a parallel increase in the demand for food. This situation gives place the need for urgent development of alternative and sustainable resources to satisfy this nutritional requirement. Human nutrition is currently based on fisheries, which accounts for 50% of the fish production for human consumption, but also on agriculture, livestock, and aquaculture. Among them, aquaculture has been pointed out as a promising source of animal protein that can provide the population with high-quality protein food. This productive model has also gained attention due to its fast development. However, several aquaculture species require considerable amounts of fish protein to reach optimal growth rates, which represents its main drawback. Aquaculture needs to become sustainable using renewable source of nutrients with high contents of proteins to ensure properly fed animals. To achieve this goal, different approaches have been considered. In this sense, single-cell protein (SCP) products are a promising solution to replace fish protein from fishmeal. SCP flours based on microbes or algae biomass can be sustainably obtained. These microorganisms can be cultured by using residues supplied by other industries such as agriculture, food, or urban areas. Hence, the application of SCP for developing innovative fish meal offers a double solution by reducing the management of residues and by providing a sustainable source of proteins to aquaculture. However, the use of SCP as aquaculture feed also has some limitations, such as problems of digestibility, presence of toxins, or difficulty to scale-up the production process. In this work, we review the potential sources of SCP, their respective production processes, and their implementation in circular economy strategies, through the revalorization and exploitation of different residues for aquaculture feeding purposes. The data analyzed show the positive effects of SCP inclusion in diets and point to SCP meals as a sustainable feed system. However, new processes need to be exploited to improve yield. In that direction, the circular economy is a potential alternative to produce SCP at any time of the year and from various cost-free substrates, almost without a negative impact.