Tuesday, 26 September 2017

Improved 1,3-propanediol production with maintained physical conditions and optimized media composition: Validation with statistical and neural approach

Biochemical Engineering Journal

This work is aimed at assessing the use of response surface methodology (RSM) and artificial neural networks (ANNs) for modelling, and predicting, the optimum parameters for 1,3-Propanediol production by Lactobacillus brevis N1E9.3.3 from glycerol and glucose co-fermentation. A preliminary study of physical parameters was conducted using Plackett-Burman design to reduce the number of input variables up to seven; i) beef extract, ii) yeast extract, iii) MgSO4·7H2O, iv) MnSO4·H2O, v) vitamin B12, vi) glycerol and vii) glucose. The traditional RSM models were improved by ANN models between a 54.08% and 12.19% in terms of root mean square error (RMSE). This study suggested that RSM and ANN can be considered as effective tools to model and predict optimum parameters for 1,3-Propanediol production by L. brevis N1E9.3.3.