Benzaldehyde and its derivatives are used as food supplements. These substances can be used mainly as flavorings or as antioxidants. Besides, peroxynitrite, an oxidizing agent, could be formed in canned food. Both species could react between them. The present article has focused on the kinetic study of the oxidation of aldehydes by peroxynitrite. A reaction mechanism that justifies all the experimental results is proposed. This mechanism, in acidic media, passes through three competitive pathways: (a) a radical attack that produces benzoic acid. (b) peracid oxidation, and (c) a nucleophilic attack of peroxynitrous acid over aldehyde to form an intermediate, X, that produces benzoic acid, or, through a Cannizzaro-type reaction, benzoic acid and benzyl alcohol. All rate constants involved in the third pathway (c) have been calculated. These results have never been described in the literature in acid media. A pH effect was analyzed.
Showing posts with label Food additives. Show all posts
Showing posts with label Food additives. Show all posts
Friday, 17 March 2023
Wednesday, 27 March 2019
Interaction of Caffeic Acid with SDS Micellar Aggregates
Molecules 2019, 24(7), 1204
Micellar systems consisting of a surfactant and an additive such as an organic salt or an acid usually self-organize as a series of worm-like micelles that ultimately form a micellar network. The nature of the additive influences micellar structure and properties such as aggregate lifetime. For ionic surfactants such as sodium dodecyl sulfate (SDS), CMC decreases with increasing temperature to a minimum in the low-temperature region beyond which it exhibits the opposite trend. The presence of additives in a surfactant micellar system also modifies monomer interactions in aggregates, thereby altering CMC and conductance. Because the standard deviation of β was always lower than 10%, its slight decrease with increasing temperature was not significant. However, the absolute value of Gibbs free enthalpy, a thermodynamic potential that can be used to calculate the maximum of reversible work, increased with increasing temperature and caffeic acid concentration. Micellization in the presence of caffeic acid was an endothermic process, which was entropically controlled. The enthalpy and enthropy positive values resulted from melting of “icebergs” or “flickering clusters” around the surfactant, leading to increased packing of hydrocarbon chains within the micellar core in a non-random manner. This can be possibly explained by caffeic acid governing the 3D matrix structure of water around the micellar aggregates. The fact that both enthalpy and entropy were positive testifies to the importance of hydrophobic interactions as a major driving force for micellization. Micellar systems allow the service life of some products to be extended without the need to increase the amounts of post-harvest storage preservatives used. If a surfactant is not an allowed ingredient or food additive, carefully washing it off before the product is consumed can avoid any associated risks. In this work, we examined the influence of temperature and SDS concentration on the properties of SDS–caffeic acid micellar systems. Micellar properties can be modified with various additives to develop new uses for micelles. This allows smaller amounts of additives to be used without detracting from their benefits.
Labels:
Anionic Amphiphiles,
Caffeic Acid,
CMC,
Food additives,
Micelles,
SDS
Saturday, 5 May 2018
Encapsulation of Essential Oils by Cyclodextrins: Characterization and Evaluation
Cyclodextrin: A Versatile Ingredient
The essential oils normally had low physicochemical stability and low solubility in water. These facts limit their industrial applications in general and in food formulations particu- larly. This chapter characterizes the physicochemical properties and the antioxidant and antimicrobial activities of three encapsulated essential oils – guava leaf, yarrow and black pepper essential oils – in hydroxypropyl-β-cyclodextrin (HPβCD).
Labels:
Antimicrobial,
Antioxidants,
Cyclodextrins,
Esencial Oil,
Food additives
Friday, 17 March 2017
A Critical Review of Bioactive Food Components, and of their Functional Mechanisms, Biological Effects and Health Outcomes.
Curr Pharm Des. 2017;23(19):2731-2741
Background:
Eating behaviours are closely related to some medical conditions potentially leading to death such as cancer, cardiovascular disease and diabetes. Healthy eating practices, maintaining a normal weight, and regular physical activity could prevent up to 80% of coronary heart disease, 90% of type-2 diabetes and onethird of all cancers.
Method:
Over the last two decades, the food industry has invested much effort in research and development of healthier, more nutritious foods. These foods are frequently designated "functional" when they contain nutritional components required for healthy living or "nutraceuticals" when intended to treat or prevent disease or disorders through a variety of bioactive (e.g., antioxidant, antimicrobial, immunomodulatory, hypocholesterolaemic) functions that are performed by functional enzymes, probiotics, prebiotics, fibres, phytosterols, peptides, proteins, isoflavones, saponins or phytic acid, among other substances.
Results:
Some agricultural and industrial residues have proven to be excellent choices as raw materials for producing bioactive compounds and have been proposed as potentially safe natural sources of antimicrobials and/or antioxidants for the food industry. Functional food ingredients containing bioactive compounds could be used as plant extracts by pharmaceutical and food industries.
Conclusion:
Bioactive food components influence health outcomes.
Tuesday, 2 February 2016
Phenolics production from alkaline hydrolysis of autohydrolysis liquors
CyTA - Journal of Food, 14 (2016) 255-265
The objective of this work was to study the release, identification and characterization of phenolic compounds by saponification of non-isothermal autohydrolysis liquors of corn (Zea mays) cobs and Eucalyptus globulus. Corn cobs and E. globulus are lignocellulosic materials with high contents in cellulose and hemicelluloses. Efficient use of these materials can be achieved using autohydrolysis as the first stage of a biorefinery, resulting in a solid phase rich in cellulose and lignin, and a liquid phase containing essentially hemicelluloses-derived compounds and phenolic compounds from the partial solubilization of lignin. This work studied the combination of alkaline hydrolysis and extraction with organic solvents to maximize the amounts of released phenolic compounds since these compounds are interesting for their properties and food applications.
Subscribe to:
Posts (Atom)