Showing posts with label High pressure. Show all posts
Showing posts with label High pressure. Show all posts

Sunday, 30 July 2017

High hydrostatic pressure as pretreatment and adjuvant for the enzymatic release of ferulic acid from corn cob

Process Biochemistry


Bioprocesses based on the use of enzymes can be employed for the obtainment of ferulic acid by its solubilization from corn cob, which is a natural source of this phenolic compound. In order to overcome the limitations caused by the recalcitrance of biomass, the application of pretreatments is advisable. The utilization of high hydrostatic pressure on the enzymatic release of ferulic acid from corn cob with three feruloyl esterase extracts was studied applying pressurization at 600 MPa as a pretreatment in combination with a mild thermal treatment at 130 °C/2 h. Additionally, pressurization at 200 MPa during the enzymatic hydrolysis step was assessed to increase the ferulic acid yield. The results showed that the application of a high pressure pretreatment at 600 MPa/40 °C/15 min to thermally treated corn cob increased by 20% the ferulic acid release in comparison with the thermal treatment for Ultraflo® L, but not for the Aspergillus extracts. Pressurization at 200 MPa during the hydrolysis stage affected differently the enzymes stability and ferulic acid release depending on the extract and the pretreatments applied, showing that the effects of pressurization are complex and must be assessed in each case.

Tuesday, 30 August 2016

Effect of high pressure treatment on the structural, mechanical and rheological properties of glucomannan gels

Food Hydrocolloids, 60 (2016) 437–444
http://dx.doi.org/10.1016/j.foodhyd.2016.04.015


The influence of high hydrostatic pressure (HHP) of 100 (C100), 200 (C200), 400 (C400) and 600 MPa (C600) on the structural, physicochemical, and thermo-rheological properties of aqueous glucomannan dispersions (AGD) was studied. Each AGD was prepared with a 5% concentration of deacetylated glucomannan (GM) at pH = 11 for use in the preparation of restructured fish products. The control (0 MPa) AGD (C0) exhibited a partially crystalline GM network with a glass transition temperature (Tg) of ∼75 °C. C0 gels at 25 °C were rigid, with high breaking force (BF), fracture constant (Kf) and complex modulus (G*) and low tanδ values due to the large number of physical junctions produced by complete deacetylation of the GM chains. This structural response was reflected in high water binding capacity (WBC) and colour (L*) and low cooking loss (CL). Specifically, 200 MPa reduced close packing ability in the crystalline regions, evidenced in the lower Tg∼65 °C and resulting in lower gel strength (S), Kf, G* and a higher viscous component (high tanδ), thus reducing the L* value. Conversely, 600 MPa increased the degree of cross-linking in C600, reinforcing the number and extent of crystalline regions, resulting in the broadening of the O–H stretching band in the FT-IR spectrum and producing a thermoset physical network with no glass transition region. Thus, C600 gel was firmer (higher G*) with greater S, and less flexible (lower strain amplitude-γmax). Consequently, depending on the textural properties desired in the final restructured fish product, the most appropriate pressure would be 200 MPa for softer final gels and 600 MPa for firmer and less deformable gels.