Showing posts with label Support vector machine. Show all posts
Showing posts with label Support vector machine. Show all posts

Thursday, 16 March 2023

Machine Learning to Predict the Adsorption Capacity of Microplastics

 Nanomaterials 2023, 13(6), 1061


Nowadays, there is an extensive production and use of plastic materials for different industrial activities. These plastics, either from their primary production sources or through their own degradation processes, can contaminate ecosystems with micro- and nanoplastics. Once in the aquatic environment, these microplastics can be the basis for the adsorption of chemical pollutants, favoring that these chemical pollutants disperse more quickly in the environment and can affect living beings. Due to the lack of information on adsorption, three machine learning models (random forest, support vector machine, and artificial neural network) were developed to predict different microplastic/water partition coefficients (log Kd) using two different approximations (based on the number of input variables). The best-selected machine learning models present, in general, correlation coefficients above 0.92 in the query phase, which indicates that these types of models could be used for the rapid estimation of the absorption of organic contaminants on microplastics.


Wednesday, 14 December 2022

Global Solar Irradiation Modelling and Prediction Using Machine Learning Models for Their Potential Use in Renewable Energy Applications

 Mathematics 2022, 10(24), 4746




Global solar irradiation is an important variable that can be used to determine the suitability of an area to install solar systems; nevertheless, due to the limitations of requiring measurement stations around the entire world, it can be correlated with different meteorological parameters. To confront this issue, different locations in Rias Baixas (Autonomous Community of Galicia, Spain) and combinations of parameters (month and average temperature, among others) were used to develop various machine learning models (random forest -RF-, support vector machine -SVM- and artificial neural network -ANN-). These three approaches were used to model and predict (one month ahead) monthly global solar irradiation using the data from six measurement stations. Afterwards, these models were applied to seven different measurement stations to check if the knowledge acquired could be extrapolated to other locations. In general, the ANN models offered the best results for the development and testing phases of the model, as well as for the phase of knowledge extrapolation to other locations. In this sense, the selected ANNs obtained a mean absolute percentage error (MAPE) value between 3.9 and 13.8% for the model development and an overall MAPE between 4.1 and 12.5% for the other seven locations. ANNs can be a capable tool for modelling and predicting monthly global solar irradiation in areas where data are available and for extrapolating this knowledge to nearby areas.


Friday, 8 October 2021

Machine Learning Applied to the Oxygen-18 Isotopic Composition, Salinity and Temperature/Potential Temperature in the Mediterranean Sea

 Mathematics 2021, 9(19), 2523


This study proposed different techniques to estimate the isotope composition (δ18O), salinity and temperature/potential temperature in the Mediterranean Sea using five different variables: (i–ii) geographic coordinates (Longitude, Latitude), (iii) year, (iv) month and (v) depth. Three kinds of models based on artificial neural network (ANN), random forest (RF) and support vector machine (SVM) were developed. According to the results, the random forest models presents the best prediction accuracy for the querying phase and can be used to predict the isotope composition (mean absolute percentage error (MAPE) around 4.98%), salinity (MAPE below 0.20%) and temperature (MAPE around 2.44%). These models could be useful for research works that require the use of past data for these variables.


Monday, 13 July 2020

Stability assessment of extracts obtained from Arbutus unedo L. fruits in powder and solution systems using machine-learning methodologies

 Food Chem. 2020, 333,127460


Arbutus unedo L. (strawberry tree) has showed considerable content in phenolic compounds, especially flavan-3-ols (catechin, gallocatechin, among others). The interest of flavan-3-ols has increased due their bioactive actions, namely antioxidant and antimicrobial activities, and by association of their consumption to diverse health benefits including the prevention of obesity, cardiovascular diseases or cancer. These compounds, mainly catechin, have been showed potential for use as natural preservative in foodstuffs; however, their degradation is increased by pH and temperature of processing and storage, which can limit their use by food industry. To model the degradation kinetics of these compounds under different conditions of storage, three kinds of machine learning models were developed: i) random forest, ii) support vector machine and iii) artificial neural network. The selected models can be used to track the kinetics of the different compounds and properties under study without the prior knowledge requirement of the reaction system.


Saturday, 4 July 2020

Stability assessment of extracts obtained from Arbutus unedo L. fruits in powder and solution systems using machine-learning methodologies

 Food Chemistry, 2020, 33, 127460

DOI:10.1016/j.foodchem.2020.127460


Arbutus unedo L. (strawberry tree) has showed considerable content in phenolic compounds, especially flavan-3-ols (catechin, gallocatechin, among others). The interest of flavan-3-ols has increased due their bioactive actions, namely antioxidant and antimicrobial activities, and by association of their consumption to diverse health benefits including the prevention of obesity, cardiovascular diseases or cancer. These compounds, mainly catechin, have been showed potential for use as natural preservative in foodstuffs; however, their degradation is increased by pH and temperature of processing and storage, which can limit their use by food industry. To model the degradation kinetics of these compounds under different conditions of storage, three kinds of machine learning models were developed: i) random forest, ii) support vector machine and iii) artificial neural network. The selected models can be used to track the kinetics of the different compounds and properties under study without the prior knowledge requirement of the reaction system.



Saturday, 1 February 2020

Random Forest, Artificial Neural Network, and Support Vector Machine Models for Honey Classification

eFood, 2020, 1(1) 69-76


Different separated protein fractions by the electrophoretic method in polyacrylamide gel were used to classify two different types of honeys, Galician honeys and commercial honeys produced and packaged outside of Galicia. Random forest, artificial neural network, and support vector machine models were tested to differentiate Galician honeys and other commercial honeys produced and packaged outside of Galicia. The results obtained for the best random forest model allowed us to determine the origin of honeys with an accuracy of 95.2%. The random forest model, and the other developed models, could be improved with the inclusion of new data from different commercial honeys.