Monday, 3 October 2016

2016 Nobel Prize in Physiology or Medicine



The Nobel Assembly at Karolinska Institutet has today decided to award the 2016 Nobel Prize in Physiology or Medicine to


"for his discoveries of mechanisms for autophagy"





This year's Nobel Laureate discovered and elucidated mechanisms underlying autophagy, a fundamental process for degrading and recycling cellular components.  

The word autophagy originates from the Greek words auto-, meaning "self", and phagein, meaning "to eat". Thus,autophagy denotes "self eating". This concept emerged during the 1960's, when researchers first observed that the cell could destroy its own contents by enclosing it in membranes, forming sack-like vesicles that were transported to a recycling compartment, called the lysosome, for degradation. Difficulties in studying the phenomenon meant that little was known until, in a series of brilliant experiments in the early 1990's, Yoshinori Ohsumi used baker's yeast to identify genes essential for autophagy. He then went on to elucidate the underlying mechanisms for autophagy in yeast and showed that similar sophisticated machinery is used in our cells.

Ohsumi's discoveries led to a new paradigm in our understanding of how the cell recycles its content. His discoveries opened the path to understanding the fundamental importance of autophagy in many physiological processes, such as in the adaptation to starvation or response to infection. Mutations in autophagy genes can cause disease, and the autophagic process is involved in several conditions including cancer and neurological disease.

Degradation – a central function in all living cells
In the mid 1950's scientists observed a new specialized cellular compartment, called an organelle, containing enzymes that digest proteins, carbohydrates and lipids. This specialized compartment is referred to as a "lysosome" and functions as a workstation for degradation of cellular constituents. The Belgian scientist Christian de Duve was awarded the Nobel Prize in Physiology or Medicine in 1974 for the discovery of the lysosome. New observations during the 1960's showed that large amounts of cellular content, and even whole organelles, could sometimes be found inside lysosomes. The cell therefore appeared to have a strategy for delivering large cargo to the lysosome. Further biochemical and microscopic analysis revealed a new type of vesicle transporting cellular cargo to the lysosome for degradation (Figure 1). Christian de Duve, the scientist behind the discovery of the lysosome, coined the term autophagy, "self-eating", to describe this process. The new vesicles were named autophagosomes.

Figure 1: Our cells have different specialized compartments. Lysosomes constitute one such compartment and contain enzymes for digestion of cellular contents. A new type of vesicle called autophagosome was observed within the cell. As the autophagosome forms, it engulfs cellular contents, such as damaged proteins and organelles. Finally, it fuses with the lysosome, where the contents are degraded into smaller constituents. This process provides the cell with nutrients and building blocks for renewal.
During the 1970's and 1980's researchers focused on elucidating another system used to degrade proteins, namely the "proteasome". Within this research field Aaron Ciechanover, Avram Hershko and Irwin Rose were awarded the 2004 Nobel Prize in Chemistry for "the discovery of ubiquitin-mediated protein degradation". The proteasome efficiently degrades proteins one-by-one, but this mechanism did not explain how the cell got rid of larger protein complexes and worn-out organelles. Could the process of autophagy be the answer and, if so, what were the mechanisms?

A groundbreaking experiment
Yoshinori Ohsumi had been active in various research areas, but upon starting his own lab in 1988, he focused his efforts on protein degradation in the vacuole, an organelle that corresponds to the lysosome in human cells. Yeast cells are relatively easy to study and consequently they are often used as a model for human cells. They are particularly useful for the identification of genes that are important in complex cellular pathways. But Ohsumi faced a major challenge; yeast cells are small and their inner structures are not easily distinguished under the microscope and thus he was uncertain whether autophagy even existed in this organism. Ohsumi reasoned that if he could disrupt the degradation process in the vacuole while the process of autophagy was active, then autophagosomes should accumulate within the vacuole and become visible under the microscope. He therefore cultured mutated yeast lacking vacuolar degradation enzymes and simultaneously stimulated autophagy by starving the cells. The results were striking! Within hours, the vacuoles were filled with small vesicles that had not been degraded (Figure 2). The vesicles were autophagosomes and Ohsumi's experiment proved that authophagy exists in yeast cells. But even more importantly, he now had a method to identify and characterize key genes involved this process. This was a major break-through and Ohsumi published the results in 1992.

Figure 2: In yeast (left panel) a large compartment called the vacuole corresponds to the lysosome in mammalian cells. Ohsumi generated yeast lacking vacuolar degradation enzymes. When these yeast cells were starved, autophagosomes rapidly accumulated in the vacuole (middle panel). His experiment demonstrated that autophagy exists in yeast. As a next step, Ohsumi studied thousands of yeast mutants (right panel) and identified 15 genes that are essential for autophagy.
Autophagy genes are discovered
Ohsumi now took advantage of his engineered yeast strains in which autophagosomes accumulated during starvation. This accumulation should not occur if genes important for autophagy were inactivated. Ohsumi exposed the yeast cells to a chemical that randomly introduced mutations in many genes, and then he induced autophagy. His strategy worked! Within a year of his discovery of autophagy in yeast, Ohsumi had identified the first genes essential for autophagy. In his subsequent series of elegant studies, the proteins encoded by these genes were functionally characterized. The results showed that autophagy is controlled by a cascade of proteins and protein complexes, each regulating a distinct stage of autophagosome initiation and formation (Figure 3).

Figure 3: Ohsumi studied the function of the proteins encoded by key autophagy genes. He delineated how stress signals initiate autophagy and the mechanism by which proteins and protein complexes promote distinct stages of autophagosome formation.
Autophagy – an essential mechanism in our cells
After the identification of the machinery for autophagy in yeast, a key question remained. Was there a corresponding mechanism to control this process in other organisms? Soon it became clear that virtually identical mechanisms operate in our own cells. The research tools required to investigate the importance of autophagy in humans were now available.

Thanks to Ohsumi and others following in his footsteps, we now know that autophagy controls important physiological functions where cellular components need to be degraded and recycled. Autophagy can rapidly provide fuel for energy and building blocks for renewal of cellular components, and is therefore essential for the cellular response to starvation and other types of stress. After infection, autophagy can eliminate invading intracellular bacteria and viruses. Autophagy contributes to embryo development and cell differentiation. Cells also use autophagy to eliminate damaged proteins and organelles, a quality control mechanism that is critical for counteracting the negative consequences of aging.

Disrupted autophagy has been linked to Parkinson's disease, type 2 diabetes and other disorders that appear in the elderly. Mutations in autophagy genes can cause genetic disease. Disturbances in the autophagic machinery have also been linked to cancer. Intense research is now ongoing to develop drugs that can target autophagy in various diseases.

Autophagy has been known for over 50 years but its fundamental importance in physiology and medicine was only recognized after Yoshinori Ohsumi's paradigm-shifting research in the 1990's. For his discoveries, he is awarded this year's Nobel Prize in physiology or medicine.

Key publications
  • Takeshige, K., Baba, M., Tsuboi, S., Noda, T. and Ohsumi, Y. (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. Journal of Cell Biology 119, 301-311
  • Tsukada, M. and Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cervisiae. FEBS Letters 333, 169-174
  • Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D.J., Ohsumi, M. and Ohsumi, Y. (1998). A protein conjugation system essential for autophagy. Nature 395, 395-398
  • Ichimura, Y., Kirisako T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T. and Ohsumi, Y. (2000). A ubiquitin-like system mediates protein lipidation. Nature, 408, 488-492




Yoshinori Ohsumi was born 1945 in Fukuoka, Japan. He received a Ph.D. from University of Tokyo in 1974. After spending three years at Rockefeller University, New York, USA, he returned to the University of Tokyo where he established his research group in 1988. He is since 2009 a professor at the Tokyo Institute of Technology.


Fuente: The Official Web Site of the Nobel Price


1-3-Dichloropropene 2030 Agenda priorities Abribone Particles Accumulation Acid Soils Acidification Activated Carbon Active ingredients Acuicultura Adsorption Adulteration Aeration Aerobiology Aggregation Agricultural Residue Agro-industrial waste Agronomic performance Agrostis capillaris Air temperature Airborne Alcohols Aldehyde Algae Alkaline Hydrolysis Alkylamines Allelochemical stress Allergy Aluminium Alzheimer's Disease Amendment Amino acid and purine biosynthesis Amphibolite Amylases Analysis Anionic Amphiphiles AnionsMetals ANN Anoma Anthocyanins Anti-aging Anti-cancer activity Antidepressant Antimicrobial Antimicrobial applications Antimicrobial compounds Antioxidants Antioxidants Activity Antiradical Activity Antitumorigenic activity Antiviral Apples Applications AQUA-CIBUS Aqueous solution Arabidopsis thaliana Arbequina ARIMA Aroma Aromatic compounds Aromatic plants Arsenic Artificial Neural Networks Ascorbic acid Ashes Atmospheric Pollution Authentication Autohydrolysis Auxins Availability Axisymetric Models Bacillus subtilis Bacterial growth Bacteriocin Bare fallow soils Barley straw Barrels Batch Beer Bentonite Berry Bilinear matrix Bioactive compounds Bioactive Food Components Bioactive substances Bioactivities Bioavailability Biochar Bioethanol Biofilm Biological indicator Biomarkers Biomonitoring Biorefinery Biosorbent Biotransformation Black Pepper Blockchain Technology Blueberry Body weight Boscalid Botrycides Botrytis cinerea Brassica juncea Brewery wastes Brown macroalgae BTEX Bullet corrosion Butter fat By-products Cadmium Caffeic Acid Calcium Candelilla Candidate gene Carbon isotope discrimination Carburan Catechin-rich extract Cattle Slurry Cell cycle Celta pig breed Characterization Cheese whey Chemical composition Chemical equilibrium Chemometrics Chemoresistance Chestnuts Chloropicrin Chlorteracycline Cholinesterases Chorizo Chromatography Chromium Circular economy Clasification Climate change Climate impact CMC Cobalt Colloids Color Column experiments Competitive sorption Compost Compounds Conformational changes Conjoint analysis Continuous fermentation Control Controlled deficit irrigation Cooking methods Copper Corn breeding Corn cob Corn stover Cornicabra Cortical Neurons Corticosteroids Corticosterone Cortisol Cosmetics Cow Milk Crop Protection Crushed Mussel Shell cucurbit[7]uril cucurbituril Curing Cycas pectinata Cyclic voltammetry Cyclodextrins Cyclopentadecanone Cytotoxicity Dactylis glomerata Data Acquisition and Management Data analysis Decomposition Decontamination Degradation Dehydrogenase activity Denitrosation Density Desorption DFT calculations Diabetes mellitus Dietary polyphenols Dinamic Surface Tension Discharge prediction Disease prevention Dissipation Dithiocarbamates Doxycycline Dry fruit Dry-cured Drying DTCs Edible films Edible flowers Ehrlich pathway Encapsulation Enrichment factors Enterococcus faecium Enzymatic hydrolysis Enzymatic saccharification ErbB2 Ergosterol biosynthesis Esencial Oil Essential oils Ethanol Ethnobotanic Ethylene Ethylenethiourea Eucalyptus camaldulensis EVOO EVOO applications EVOO quality EVOOs Extra Virgin Olive Oil Extraction Extraction Optimization Extraction techniques Fast growing biomass Fat healthiness Fat oxidation Fatty Acids Faults FE-SEM/EDS Feathers Fed-batch fermentation Fed-batch SSF Fed-batch system Feed intake Feluric Acid Feluroyl esterase Fenhexamid Ferhexamid Fermentation Ferulic acid Feruloyl Feruloyl esterase Fingerprint Firing range soils Fish oil Flavanols Flavor Flowering delay Fluorescence Fluoride Fluorine Focus group Folin-Ciocalteuassay Food additives Food analysis Food authentication Food Authenticity Food by-products Food composition Food fingerprinting Food intake-related public risks Food Quality Food Supply Chain Food sustainability Food systems Food Traceability Foods Forest Forest Soils Formación Fortification Fortified Wines Fourier transform infrared Fractionation Fraxinus Frog Frozen storage Frugal-innovation Fucoxanthin Fuidized bed reactor Fullerene Functional Enzymes Functional Food Fungal Spores Fungicide Fungicides Furfural Galicia Galician virgin olive oils Garlic Garnacha Tintorera Gastrointestinal tract GC GC/MS Gelation Generic diversity Genetic variation Geothermal systems Germination Germplasm charaterization Glassy network Glucomannan Gold nanoparticles Gourmet Graciano Granite Granite powder Granitic Material Grape juice Grapes Grasshopper Effect Gravitropism Green synthesis Growth Guava HAE Hair Health benefits Heat-Assited Extraction Heavy Metals Helath claim Hemicelluloses Hemp waste Heterocyclic aromatic amines High hydrostatic pressure High pressure High solids loading Histeresys index Histolocalization Hordeum vulgar HPLC HPLC-DAD HPLC-FLD HPLC-MS/MS HPLC/MS HR-TEM/EDS Humid acid Hyaluronic acid Hydrogeology Hydrolysis Hydroxycinnamic acid Hydroxylpropyl-beta-cyclodextrins Hyperspectral imaging immobilization In vitro Industrial applications Industrial level Innovative functional foods Instrumental analysis Ionic Liquids Iron Job Opportunities Jornadas Kale Keroxim Kinematic viscosity Kinetics Konjac glucomannan Laboratory column Lactic acid Lactic acid bacteria Land use LDT Lead Leaf water relations Lenga temperate forests Liberation Lignin Ligustrum Lime pretreatment Linear Discriminant Analysis Lipid oxidation Lipolysis Lipoxygenase Liqueurs Long-term fertilization Lotka-Volterra Low toxicity Maceration Machine learning Macroalgae Macroalgae applications Magnesium Maize populations Major Depressive Disorder MALDI-TOF/TOF-MS Mancozeb MAO Marcozeb Marinades Measures and indicators Meat Meat Quality Medicinal plant Mediterranean diet Membrane filtration Mepanipyrim Mercury Metabolism Metabolite Metabolites Metabolomics Metal Metal availability Metal fractionation Metalaxyl Meteorology Methyl isothiocyanate Metrafenone Micelles Microalgae Microbiota Microemulsions Microscopy Microtubules Mine Mine soil Mine tailing Mode of Action Modelisation Molecular docking Monoamine Oxidase MS MS/MS Multidrug resistance Multiple chemicals Multiproduct biorefinery Multivariate analysis Muscle foods Mussel Mussel shell Mustard plants Nanocoating Nanoparticle Nanowhisker NAO index Natural Colorants Natural sources Neonates Neonicitinoids Neurodegenerative Disorders Neuroprotection Neurotoxins Nickel NIR Nisin Nitric Oxide Nitrosomercaptopyridine NO Non-linear processes Noticias Novel technologies NPK Fertilizers Nutraceulticals Nutrients Oak ash Oak species Oat straw OAV Ocimum basilicum var. purpurascens leaves OCPs Odorants Odour Activity Value Ole e 1 Olea Oleaceae Olive Co-crushing Olive Oil Olive oil by-products OncomiR OPEs OPPs OPs Optimization Organic amendment Organic carbon Organic matter Organic pollutants Ourense Oxidation Oxidative damage Oxidative phase Oximes Oxytetracycline Ozone p-hydroxybenzoic acid PAHs Paper Industry Parkinson's Disease Pastureland Soils Pathogenic bacteria PBDEs PBDs PCBs PCDDs PCDFs PDO Pellets Percolation Perlite waste addition Pest Management Protocols Pesticide Pets pH pH-spectra Phenolic and aromatic compounds Phenolic Compounds Phenolics Phenology Phenotyping Phosphate Phosphorus Phosphorus adsorption Phosphorus desorption Physical protection Physiological responses Phytochemicals Phytopigments Phytostabilization Phytotoxic effects Phytotoxicity Picual Pig Pig genotypes Pig Stress Pigeon Piglets Pine bark Pine Sawdust Pinus sylvestris Pistachia vera Placenta Plant cell walls Plant production Plantago Plasma Pollen Polluted Soils Polluted Water Pollution Polymer Polyphenols Post-harvest drying Potato Prairie Prebiotic activity Precipitation Prediction Prenatal Preservation Prevention Probiotics Process optimization Production Profiling Properties Proteases protected denomination of origin Proteome profile Proteomics Public health Purification Putative transcription factors Pyritic material PYRs Quality-related Indices Quantification Racked bed reactor Rain Rainfastness Raman Random forest Rank annihilation factor analysis Raw Fish Oil Reaction kinetics modelling Reactor Realkalization Red Rubin Basil Red Wines Redes de Investigación Reinforced Wines Remediation Residues Resistance Response surface methodology Retaining capacity Retention Reuse Rheological properties Ripening temperature RISEGAL Risk assessment Risk Periodos River River bed sediments RMN Root growth Roots Rosaceae family RSM S-nitrosothiol Salting intensity Saponification Screening methods SDS SDS-PAGE Secondary Metabolites Seedling Seminarios Sensory analysis Sensory attributes Sepia Ink Sequential extraction Serotonin Sesamia nonagrioides Settling pond Shelf-life Shelterwood-cut silvicultural system Shooting range Short chain fatty acids Signalling pathways Silage Single extraction Slaughterhouse Large Time Soil Soil aggregates Soil Amendment Soil impact Soil pollution Soil remediation Soil residues Soil structure Soils Solanum tuberosum Solid-state fermentation Solvent Extraction Sorption Soybean oil Spectrometry Spectroscopy Speed of Sound Spirits SSR markers Stability Stress response Styrene Subcutaneous ham fat Subcutaneous pig back-fat Sulfamethoxazole Sulfur-containing compounds Support vector machine Surface Surface Tension Surfactants Sustainability Sustainable Adsorbents Sustainable Development Sustainable use of natural resources SWAdSV Sweet Wines Swertia chirata Taladros Tarbush Taste Technosol Tempranillo Tenacity Terra preta do índio Tetraciclyne Thermal gelation profiles Thermal springs Throughfall Tiamulin TOF-SIMS Toro Appellation of Origin Total aliphatic hydrocarbons Toxic cocktail effects Toxicity Traditional Smoked Foods Traditionally used plants trans-Caryophyllene Transcriptomics Transport Transport experiment Tree vegetation Trimethoprim Tropical soils Tumor suppressor miR Underground waters University of Vigo Urine UV-Vis spectroscopy Vaccinium corymbosum Vacuum packaging Valorization Vanadium Variedades tolerantes Vinclozolin Vine trimming shoot Vineyard Virgin Olive Oils Virus Viscosity Vitamin Volatile Volatile Compounds Voltímetro Wash-off Waste reduction Wastes Wastewater Water deficit Water efficiency Water pollution Water quality Water temperature Weakly deacetylation Weather Webinar Wells Wheat straw Whey Wine Wine aging Wine Quality Wine-making Practices Winemaking Process Withered inflorescences Wood Wood Ash Xylitol Xylooligosaccharides Xylose Zea mays Zinc β-Lactoglobulin