Showing posts with label Whey. Show all posts
Showing posts with label Whey. Show all posts

Monday, 13 September 2021

Production of a Potentially Probiotic Product for Animal Feed and Evaluation of Some of Its Probiotic Properties

 Int. J. Mol. Sci. 2021, 22(18), 10004



Nowadays, probiotics have been proposed for substituting antibiotics in animal feed since the European Union banned the latter compounds in 2006 to avoid serious side effects on human health. Therefore, this work aimed to produce a probiotic product for use in animal feed by fed-batch fermentation of whey with a combination of kefir grains, AGK1, and the fermented whole milk used to activate these kefir grains. The probiotic culture obtained was characterized by high levels of biomass (8.03 g/L), total viability (3.6 × 108 CFU/mL) and antibacterial activity (28.26 Activity Units/mL). Some probiotic properties of the probiotic culture were investigated in vitro, including its survival at low pH values, under simulated gastrointestinal conditions, after freezing in skim milk at −20 °C, and in the commercial feed during storage at room temperature. The viable cells of lactic and acetic acid bacteria and yeasts exhibited higher tolerance to acidic pH and simulated gastrointestinal conditions when the cells were protected with skim milk and piglet feed, compared with washed cells. The results indicated the feasibility of producing a probiotic product at a low cost with a potential application in animal feed.

Monday, 31 July 2017

Combination of food wastes for an efficient production of nisin in realkalized fed-batch cultures

Biochemical Engineering Journal


Nisin production by Lactococcus lactis CECT 539 was studied in four realkalized fed-batch cultures in diluted whey with feeding with lactose- and glucose-containing substrates. The first and third cultures were fed with mixtures of whey (W) and a 400 g/L concentrated glucose (CG), or with a concentrated mussel processing waste (CMPW) and CG, respectively.
The second and fourth cultures were respectively performed under the same conditions as in the first and third fermentations. However, these cultures were supplemented with mixtures of W plus a 2% (w/v) yeast extract (WYE2) and CG (second culture), or with CMPW plus a 2% (w/v) yeast extract (CMPWYE2) (fourth culture) after sample extractions at 132 and 168 h, respectively. From these times, each culture was fed with mixtures of WYE2 and CG, or CMPWYE2 and CG, respectively.
The final concentrations of nisin obtained in the third (223.98 BU/mL) and fourth (350.61 BU/mL) cultures, fed with glucose-containing substrates (CG and CMPW), were considerably higher than those obtained in the first (108.00 BU/mL) and second (158.53 BU/mL) cultures fed with the mixture of lactose- and glucose-containing substrates (W and CG).

Thursday, 29 September 2016

Applied Microbiology and Biotechnology, 2016, 100 (18), 7899–790
DOI: 10.1007/s00253-016-7558-9


Nisin production by Lactococcus lactis CECT 539 was followed in batch cultures in whey supplemented with different concentrations of glucose and in two realkalized fed-batch fermentations in unsupplemented whey, which were fed, respectively, with concentrated solutions of lactose and glucose. In the batch fermentations, supplementation of whey with glucose inhibited both the growth and bacteriocin production. However, fed-batch cultures were characterized with high productions of biomass (1.34 and 1.51 g l−1) and nisin (50.6 and 60.3 BU ml−1) in comparison to the batch fermentations in unsupplemented whey (0.48 g l−1 and 22.5 BU ml−1) and MRS broth (1.59 g l−1 and 50.0 BU ml−1). In the two realkalized fed-batch fermentations, the increase in bacteriocin production parallels both the biomass production and pH drop generated in each realkalization and feeding cycle, suggesting that nisin was synthesized as a pH-dependent primary metabolite. A shift from homolactic to heterolactic fermentation was observed at the 108 h of incubation, and other metabolites (acetic acid and butane-2,3-diol) in addition to lactic acid accumulated in the medium. On the other hand, the feeding with glucose improved the efficiencies in glucose, nitrogen, and phosphorus consumption as compared to the batch cultures. The realkalized fed-batch fermentations showed to be an effective strategy to enhance nisin production in whey by using an appropriate feeding strategy to avoid the substrate inhibition.

Tuesday, 3 May 2016

Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus

Food Chemistry, 198, (2016) 54–61


This study focuses on the optimisation of cheese whey formulated media for the production of hyaluronic acid (HA) by Streptococcus zooepidemicus. Culture media containing whey (W; 2.1 g/L) or whey hydrolysate (WH; 2.4 g/L) gave the highest HA productions. Both W and WH produced high yields on protein consumed, suggesting cheese whey is a good nitrogen source for S. zooepidemicus production of HA. Polysaccharide concentrations of 4.0 g/L and 3.2 g/L were produced in W and WH in a further scale-up to 5 L bioreactors, confirming the suitability of the low-cost nitrogen source. Cheese whey culture media provided high molecular weight (>3000 kDa) HA products. This study revealed replacing the commercial peptone by the low-cost alternative could reduce HA production costs by up to a 70% compared to synthetic media.

Monday, 2 May 2016

Structural and thermo-rheological analysis of solutions and gels of a β-lactoglobulin fraction isolated from bovine whey

Food Chemistry, 198 (2016) 45–53
http://dx.doi.org/10.1016/j.foodchem.2015.11.090


A β-Lactoglobulin fraction (r-βLg) was isolated from milk whey hydrolysates produced with cardosins from Cynara cardunculus. The impact of the technological process on the r-βLg structure and how in turn this determined its heat-induced gelation was investigated. Results were analysed taking pure β-Lg (p-βLg) as control sample. The process induced changes in the r-βLg native conformation causing exposure of hydrophobic groups, lower thermal stability and also, shorter thermal treatments needed to give rise to non-native and aggregated species.

At pH 3.2, r-βLg and p-βLg solutions exhibited two gelation steps, with the advantage that r-βLg protein may form stable gels at lower temperature than p-βLg. At pH 7.2, a specific thermo-viscoelastic stability to 73 °C was found, which corresponded to the gel point in both protein solutions. The difference was that while for p-βLg solution in sol state δ < 45° (solid-like), however for r-βLg solution δ > 45° (fluid-like).

Tuesday, 15 March 2016

Influence of pH on viscoelastic properties of heat-induced gels obtained with a β-Lactoglobulin fraction isolated from bovine milk whey hydrolysates

Food Chemistry, 219, 2017, 169–178


A β-Lactoglobulin fraction (r-βLg) was isolated from whey hydrolysates produced with cardosins from Cynara cardunculus. The impact of the hydrolysis process on the r-βLg structure and the rheological properties of heat-induced gels obtained thereafter were studied at different pH values. Differences were observed between r-βLg and commercial β-Lg used as control. Higher values for the fluorescence emission intensity and red shifts of the emission wavelength of r-βLg suggested changes in its tertiary structure and more solvent-exposed tryptophan residues. Circular dichroism spectra also supported these evidences indicating that hydrolysis yielded an intermediate (non-native) β-Lg state.

The thermal history of r-βLg through the new adopted conformation improved the microstructure of the gels at acidic pH. So, a new microstructure with better rheological characteristics (higher conformational flexibility and lower rigidity) and greater water holding ability was founded for r-βLg gel. These results were reflected in the microstructural analysis by scanning electron microscopy.