Showing posts with label Kinetics. Show all posts
Showing posts with label Kinetics. Show all posts

Monday, 31 July 2017

Combination of food wastes for an efficient production of nisin in realkalized fed-batch cultures

Biochemical Engineering Journal


Nisin production by Lactococcus lactis CECT 539 was studied in four realkalized fed-batch cultures in diluted whey with feeding with lactose- and glucose-containing substrates. The first and third cultures were fed with mixtures of whey (W) and a 400 g/L concentrated glucose (CG), or with a concentrated mussel processing waste (CMPW) and CG, respectively.
The second and fourth cultures were respectively performed under the same conditions as in the first and third fermentations. However, these cultures were supplemented with mixtures of W plus a 2% (w/v) yeast extract (WYE2) and CG (second culture), or with CMPW plus a 2% (w/v) yeast extract (CMPWYE2) (fourth culture) after sample extractions at 132 and 168 h, respectively. From these times, each culture was fed with mixtures of WYE2 and CG, or CMPWYE2 and CG, respectively.
The final concentrations of nisin obtained in the third (223.98 BU/mL) and fourth (350.61 BU/mL) cultures, fed with glucose-containing substrates (CG and CMPW), were considerably higher than those obtained in the first (108.00 BU/mL) and second (158.53 BU/mL) cultures fed with the mixture of lactose- and glucose-containing substrates (W and CG).

Thursday, 2 February 2017

A Critical Review of the Characterization of Polyphenol-Protein Interactions and of Their Potential Use for Improving Food Quality.

Curr Pharm Des. 2017;23(19):2742-2753. 


Background:
Interest in protein-phenol interactions in biological systems has grown substantially in recent decades.

Methods:
The interest has focused largely on food systems in response to reports on the prominent roles of phenolic compounds in nutrition and health.

Results:
Phenolic compounds can have both favourable and adverse nutritional effects. Polyphenols are widely known for their antioxidant, anti-inflammatory, anticancer and antiaging properties; however, they have also been ascribed anti-nutritional effects resulting from interactions with some proteins and enzymes. Interactions between proteins and polyphenols can additionally influence food quality by altering some physical-chemical and sensory properties of foods. These effects may be useful to develop new products in food science and technology provided the nature of physical-chemical interactions between proteins and phenols is accurately elucidated. In this paper, we review the different possible modes of interaction between selected food proteins and phenolic compounds.

Conclusion:
Existing knowledge on the mechanisms behind polyphenol-protein reactions, the structures of the resulting products and their potential uses is reviewed.

Tuesday, 10 January 2017

Determination of kinetic bioconcentration in mussels after short term exposure to polycyclic aromatic hydrocarbons

Heliyon


The kinetic bioconcentration of N-heterocyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in mussels (Mytilus galloprovincialis) after short waterborne exposure was studied. Benzo[a]pyrene (BaP), its analogue azaarene 10-azabenzo[a]pyrene (AzaBaP), and their mixture (Mix), were selected to monitor the changes in water concentrations over three days. Decay of both PAHs concentrations in water after 24 h of waterborne exposure to mussels at levels of 10 and 100 μg/L follows a first order kinetic with half-lives of 4–5 h, with residual levels of PAHs below 7%. While steady-state scenarios are well studied, there is a lack of information of what happens under non-steady-state conditions, the main purpose of our paper. A synergistic bioconcentration of the mixture was found (around 800 in the mix vs. around 400 for individual PAHs at 100 μg/L of waterborne exposure). It could be explained by the following reasons. The most polar AzaBaP does not compete with the most non-polar BaP for the same tissue compartments. Whereas BaP aggregate in hydrophobic areas, AzaBaP can also do in hydrophilic areas. Moreover, a chance for complex formation between them by charge-transfer stabilization mechanisms could make possible a higher bioaccumulation as a mixture. Instead, toxicological results suggest an additive behaviour in the mixture performance, dominated by BaP, which is the key PAH controlling phase I metabolization in mussels, since is approx. three times more toxic. These experiments provide useful indications for a rapid assessment of PAHs kinetic bioconcentration in mussels.

Thursday, 29 September 2016

Applied Microbiology and Biotechnology, 2016, 100 (18), 7899–790
DOI: 10.1007/s00253-016-7558-9


Nisin production by Lactococcus lactis CECT 539 was followed in batch cultures in whey supplemented with different concentrations of glucose and in two realkalized fed-batch fermentations in unsupplemented whey, which were fed, respectively, with concentrated solutions of lactose and glucose. In the batch fermentations, supplementation of whey with glucose inhibited both the growth and bacteriocin production. However, fed-batch cultures were characterized with high productions of biomass (1.34 and 1.51 g l−1) and nisin (50.6 and 60.3 BU ml−1) in comparison to the batch fermentations in unsupplemented whey (0.48 g l−1 and 22.5 BU ml−1) and MRS broth (1.59 g l−1 and 50.0 BU ml−1). In the two realkalized fed-batch fermentations, the increase in bacteriocin production parallels both the biomass production and pH drop generated in each realkalization and feeding cycle, suggesting that nisin was synthesized as a pH-dependent primary metabolite. A shift from homolactic to heterolactic fermentation was observed at the 108 h of incubation, and other metabolites (acetic acid and butane-2,3-diol) in addition to lactic acid accumulated in the medium. On the other hand, the feeding with glucose improved the efficiencies in glucose, nitrogen, and phosphorus consumption as compared to the batch cultures. The realkalized fed-batch fermentations showed to be an effective strategy to enhance nisin production in whey by using an appropriate feeding strategy to avoid the substrate inhibition.

Thursday, 8 September 2016

Kinetic modelling of mancozeb hydrolysis and photolysis to ethylenethiourea and other by-products in water

Water Research 102 (2016) 561–571


The aim of this study was to propose kinetic models suitable for reproducing and predicting mancozeb (Mz) conversion to by-products as a function of the operational conditions. The main factors (pH, temperature and light) potentially affecting the mancozeb degradation in aqueous models were studied by a multifactorial screening design. In addition, the response surface methodology (RSM) was applied to evaluate the interactive effects of these factors on ethylenethiourea (ETU) formation. The response surface revealed that the best degradation conditions to minimize mancozeb conversion to ETU were low pH (2), low temperature (25 °C) and darkness. Under these conditions, the percentage of mancozeb remained in the solution at 72 h was approximately 10% of the initial concentration and the percentage of ETU conversion was 5.4%. However, according to the model, in surface waters under typical environmental conditions (pH 8, 25 °C and light) the percentage of mancozeb conversion to ETU would be about 17.5%. The proposed model provides a satisfactory interpretation of the experimental data obtained during the hydrolysis of mancozeb.

Wednesday, 18 November 2015

Dissipation kinetics of pre-plant pesticides in greenhouse-devoted soils

Science of the Total Environment, 543 (A) (2016) 1-8


This work was conducted to study the distribution of methyl isothiocyanate (MITC) in greenhouse soils treated with the fumigant dazomet (DZ) from the formulated product “Basamid Granular®”, but also of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) from the fumigant “Agrocelhone NE®”. In order to achieve this aim, several methods for the determination of fumigants residues in soils, but also pepper fruits were optimized and characterized. With independence of the soil depth, no residues of MITC, 1,3-D and CP above the detection limits were observed in soils covered with a polyethylene (PE) film (0.04 mm thick) after 27, 13 and 8 days of treatment, respectively. Liberation and dissipation curves of MITC in soil in presence of a PE film (0.04 mm) used to limit volatilization losses were also obtained. According to the results, the rate of decomposition of DZ into MITC have a half-life of 3.7 days in the surface horizon (5–10 cm) of the soil while in the subsurface horizon (15–20 cm), MITC formation rate is slightly slow (half-life of 3.2 days). With respect to the dissipation process, half-lives lower than 1 day were obtained for both depths (0.8 and 0.9 for the surface and the subsurface horizon, respectively). In the case of 1,3-D and CP in soil, the dissipation half-life of 1,3-D on soils was a bit higher than for CP (2 days vs. 1). In addition, the presence of residues of the fumigants on green pepper fruits grown on the treated soils was not detected as expected.