Wednesday 29 June 2022

Fu Brick Tea Manages HFD/STZ-Induced Type 2 Diabetes by Regulating the Gut Microbiota and Activating the IRS1/PI3K/Akt Signaling Pathway

 J. Agric. Food Chem. 2022, 70, 27, 8274–8287




The antidiabetic effects of Fu brick tea aqueous extract (FTE) and its underlying molecular mechanism in type 2 diabetes mellitus (T2DM) mice were investigated. FTE treatment significantly relieved dyslipidemia, insulin resistance (IR), and hepatic oxidative stress caused by T2DM. FTE also ameliorated the T2DM-induced gut dysbiosis by decreasing the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and promoting the proliferation of Bifidobacterium, Parabacteroides, and Roseburia at the genus level. Besides, FTE significantly improved colonic short-chain fatty acid levels of T2DM mice. Furthermore, the antidiabetic effects of FTE were proved to be mediated by the IRS1/PI3K/Akt and AMPK-mediated gluconeogenesis signaling pathways. Metabolomics analysis illustrated that FTE recovered the levels of 28 metabolites associated with T2DM to the levels of normal mice. Taken together, these findings suggest that FTE can alleviate T2DM by reshaping the gut microbiota, activating the IRS1/PI3K/Akt pathway, and regulating intestinal metabolites.


Monday 27 June 2022

Application of Protein in Extrusion-Based 3D Food Printing: Current Status and Prospectus

 Foods 2022, 11(13), 1902




Extrusion-based 3D food printing is one of the most common ways to manufacture complex shapes and personalized food. A wide variety of food raw materials have been documented in the last two decades for the fabrication of personalized food for various groups of people. This review aims to highlight the most relevant and current information on the use of protein raw materials as functional 3D food printing ink. The functional properties of protein raw materials, influencing factors, and application of different types of protein in 3D food printing were also discussed. This article also clarified that the effective and reasonable utilization of protein is a vital part of the future 3D food printing ink development process. The challenges of achieving comprehensive nutrition and customization, enhancing printing precision and accuracy, and paying attention to product appearance, texture, and shelf life remain significant.


Friday 10 June 2022

Lobularia libyca: Phytochemical Profiling, Antioxidant and Antimicrobial Activity Using In Vitro and In Silico Studies

Molecules 2022, 27(12), 3744



Lobularia libyca (L. libyca) is a traditional plant that is popular for its richness in phenolic compounds and flavonoids. The aim of this study was to comprehensively investigate the phytochemical profile by liquid chromatography, electrospray ionization and tandem mass spectrometry (LC-ESI-MS), the mineral contents and the biological properties of L. libyca methanol extract. L. libyca contains significant amounts of phenolic compounds and flavonoids. Thirteen compounds classified as flavonoids were identified. L. libyca is rich in nutrients such as Na, Fe and Ca. Moreover, the methanol extract of L. libyca showed significant antioxidant activity without cytotoxic activity on HCT116 cells (human colon cancer cell line) and HepG2 cells (human hepatoma), showing an inhibition zone of 13 mm in diameter. In silico studies showed that decanoic acid ethyl ester exhibited the best fit in β-lactamase and DNA gyrase active sites; meanwhile, oleic acid showed the best fit in reductase binding sites. Thus, it can be concluded that L. libyca can serve as a beneficial nutraceutical agent, owing to its significant antioxidant and antibacterial potential and due to its richness in iron, calcium and potassium, which are essential for maintaining a healthy lifestyle.


Saturday 4 June 2022

Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives

Journal of Nanobiotechnology 20, 254 (2022)




Nano-priming is an innovative seed priming technology that helps to improve seed germination, seed growth, and yield by providing resistance to various stresses in plants. Nano-priming is a considerably more effective method compared to all other seed priming methods. The salient features of nanoparticles (NPs) in seed priming are to develop electron exchange and enhanced surface reaction capabilities associated with various components of plant cells and tissues. Nano-priming induces the formation of nanopores in shoot and helps in the uptake of water absorption, activates reactive oxygen species (ROS)/antioxidant mechanisms in seeds, and forms hydroxyl radicals to loosen the walls of the cells and acts as an inducer for rapid hydrolysis of starch. It also induces the expression of aquaporin genes that are involved in the intake of water and also mediates H2O2, or ROS, dispersed over biological membranes. Nano-priming induces starch degradation via the stimulation of amylase, which results in the stimulation of seed germination. Nano-priming induces a mild ROS that acts as a primary signaling cue for various signaling cascade events that participate in secondary metabolite production and stress tolerance. This review provides details on the possible mechanisms by which nano-priming induces breaking seed dormancy, promotion of seed germination, and their impact on primary and secondary metabolite production. In addition, the use of nano-based fertilizer and pesticides as effective materials in nano-priming and plant growth development were also discussed, considering their recent status and future perspectives.


Friday 3 June 2022

Novel hydrophobic colorimetric films based on ethylcellulose/castor oil/anthocyanins for pork freshness monitoring

 LWT, 164, 2022, 113631




A novel hydrophobic colorimetric film was developed using ethyl cellulose (EC), castor oil (CO) and purple potato anthocyanin (AN) for pork freshness monitoring. The films with CO concentrations of 0% (control), 0.25%, 0.5%, 1% and 2% were developed and expressed as F0, F0.25, F0.5, F1 and F2. Scanning electron microscopy (SEM) images showed that the five films had dense surface and porous internal structures. The F0.5 film exhibited the highest tensile strength (TS) value, optimal color stability, ability to prevent the leaching of AN. The limit of detection (LOD) value of the F0.5 film to ammonia gas was 1.04 μM. The color of F0.5 film turned from red to green along with the spoilage of pork. As a result, the film was expected to be a good colorimetric indicator of pork freshness for intelligent packaging.


Wednesday 1 June 2022

Stability profiling and degradation products of dihydromyricetin in Dulbecco's modified eagle's medium

 Food Chem. 378, 132033 (2022)


Dihydromyricetin has shown many bioactivities in cell level. However, dihydromyricetin was found to be highly instable in cell culture medium DMEM. Here, the underlying degradation mechanism was investigated via UPLC-MS/MS analysis. Dihydromyricetin was mainly converted into its dimers and oxidized products. At lower temperature, dihydromyricetin in DMEM showed higher stability. Vitamin C increased the stability of dihydromyricetin in DMEM probably due to its high antioxidant potential.