Wednesday, 30 November 2022

Científicos, palangreiros e administración poñen en valor os beneficios nutricionais do consumo das grandes especies peláxicas

Presentáronse os resultados dun estudo do Grupo de Investigacións Agroambientais e Agroalimentarias sobre catro especies “ricas en proteínas de alto valor biolóxico” e ácidos graxos poliinsaturados.



A comunidade investigadora, palangreira e a administración puxeron este martes en valor os beneficios do consumo das grandes especies peláxicas, así como o efecto protector que ten o selenio fronte a contaminantes ambientais como o mercurio. Fixérono con argumentos científicos nun congreso celebrado nas instalacións da Autoridade Portuaria de Vigo e no que se presentaron os resultados do proxecto 'Beneficios do consumo das especies tiburón azul (Prionace Glauca), marraxo (Isirus oxyrinchus), peixe espada (Xiphias gladius) e atún vermello (Thunnus thynnus)', estudo realizado polo Grupo de Investigacións Agroambientais e Agroalimentarias da Universidade de Vigo, liderado polo profesor Jesús Simal, a iniciativa de Sealab, a OPP Burela (Organización de Produtores Pesqueiros do Porto de Burela), Opromar (Organización de Produtores de Pesca do Porto e Ría de Marín), Carbopesca (Organización de Produtores Pesqueros Pescadores de Carboneras) e a OPP78 (Organización de Productores Pesqueros Artesanales del Estrecho).

A inauguración do encontro estivo presidida pola conselleira do Mar, Rosa Quintana, quen destacou a importancia de desenvolver este tipo de iniciativas para difundir os beneficios nutricionais dos produtos do mar e a sustentabilidade da actividade marítimo-pesqueira. Neste liña pronunciáronse tamén os seus acompañantes de mesa, entre eles a vicerreitora de Benestar, Equidade e Diversidade, María Isabel Doval, quen destacou que desde a Universidade de Vigo se valora moito calquera acción que teña que ver co peixe, “fonte de saúde”, e coa dieta atlántica como exemplo claro de alimentación saudable. “En dieta atlántica o sur de Galicia ten moito que achegar”, subliñou a vicerreitora, quen tamén adiantou que os resultados finais do proxecto serán difundidos entre a comunidade universitaria, “sobre todo nas nosas facultades de Educación, o mellor xeito de que cheguen ás escolas e ás familias, e tamén entre as empresas concesionarias dos comedores universitarios”.

Xunto a elas participaron tamén na inauguración do congreso o presidente da Autoridade Portuaria de Vigo, Jesús Vázquez Almuiña; o director da Organización de Produtores de Pesca Fresca do Porto e Ría de Marín, Juan Carlos Martín, e o director da Organización de Produtores Pesqueiros de Burela, Sergio López.




En canto ao valor nutricional destas especies, desde o Grupo de Investigacións Agroambientais e Agroalimentarias adiantaron no congreso que estas catro especies “son ricas en proteínas de alto valor biolóxico e cun excelente perfil aminoacídico, xa que son fonte de aminoácidos esenciais, entre eles: histidina, isoleucina, leucina, lisina, treonina, triptófano, valina, fenilalanina, metionina, chegando a achegar entre o 40 e o 60% da inxesta diaria recomendada de todos os aminoácidos esenciais”, explica o profesor Miguel Ángel Prieto, membro do comité científico do congreso xunto a Jesús Simal.

Ademais, segundo explicaron os coordinadores do estudo, estas especies achegan ácidos graxos poliinsaturados, principalmente omega 3, ácido eicosapentaenoico (EPA) e ácido docosahexaenoico (DHA), que demostraron ser beneficiosos para a saúde cardiovascular. “Entre estas catro especies destaca o atún vermello, unha das que maior contido de EPA e DHA achega”, explica Prieto. Por outra banda, son fonte de vitaminas liposolubles, como as vitamina A e D, e hidrosolubles, como as vitaminas do complexo B, principalmente niacina (B3), piridoxina (B6) e cobalamina (B12). A maiores, os expertos subliñaron que estas especies destacan tamén polo seu alto contido de minerais como o Selenio (Se), Zinc (Zn), Cobre (Cu) e Manganeso (Mn).

No relativo aos posibles prexuízos derivados da posible presenza de mercurio, os investigadores da UVigo destacan que “aínda que é certo que estas especies, polo lugar que ocupan na cadea trófica e por ser especies lonxevas, acumulan máis cantidade de mercurio en comparación con especies de menor tamaño”; con todo, tamén presentan bondades nutricionais que os converten nunha opción para explorar á hora de elixir. Neste sentido, resaltan a importancia de coñecer as recomendacións de consumo realizadas polas autoridades, especificamente pola Axencia Española de Seguridade Alimentaria e Nutrición (AESAN) que recomenda para a poboación en xeral o consumo de 3–4 racións á semana de peixe procurando variar as especies entre peixes brancos e azuis. “So se fixa unha dose menor a grupos de poboación vulnerables, como os nenos entre 10 e 14 anos, onde limita o consumo destas especies a 120 g/mes, e as mulleres embarazadas ou que planeen estalo, casos nos que se desaconsella o consumo destas especies”. 




O estudo, do que ao longo desta mañá se están a presentar un primeiro avance de resultados, arrancou en febreiro de 2021 e rematará en 2023. Xira en torno a tres eixes fundamentais: realizar unha avaliación científica do valor nutricional e os beneficios do consumo destas catro especies; avaliar os datos teóricos das inxestas máximas recomendadas e os niveis máximos de mercurio permitidos, revisando o contido en mercurio de outros alimentos e comparando o risco do seu consumo; e determinar si o contido en selenio destas especies é suficiente para contrarrestar o efecto negativo do mercurio na saúde humana. Á espera das conclusión definitivas, os primeiros indicios invitan ao sector ao optimismo.

Fuente: DUVI

Wednesday, 16 November 2022

IV Xornada de Concienciación sobre o uso dos antibióticos


  • Lugar: Salón de Graos do Edificio Politécnico do Campus de Ourense
  • Data: xoves, 17 de novembro de 2022
  • Hora: ás 17.00h

 

  • 17.00h Presentación
  • 17.10h O piollo do salmón: xaque á salmonicultura

Dr. Raúl Iglesias Blanco (Profesor da área de Parasitoloxía na Universidade de Vigo)

  • 17.45h Inicio do Proxecto MicroMundo@UVigo3.0: aprendizaxe-servizo para a busca de microorganismos produtores de novos antibióticos(Curso2022-2023)

Dra. Julia Carballo Rodríguez (Profesora da área de Microbioloxía e Instructora MicroMundo na Universidade de Vigo)

  • 18.15h Mesa redonda sobre a participación no proxecto MicroMundo@UVigo

Participantes: Dna. María José Rodríguez Fernandez (Tutora, IES O Couto)

Alumnado do IES O Couto

D. Tomás González Rivas (Alumno da Facultade de Ciencias)

Dna. Julia Carballo Rodríguez (Instructora, Facultade de Ciencias)

  • 19.00h Clausura

Wednesday, 9 November 2022

“Ficus carica L.” and its by-products: A decade evidence of their health-promoting benefits towards the development of novel food formulations

 Trends in Food Science & Technology, 127, 1-13, 2022



Background
The food industry constantly searches for natural derived bioactive molecules with preventive and therapeutic effects using innovative and sustainable strategies. Fig production and processing generate a considerable amount of by-products (leaves, pulp, peels, seeds, and latex) with limited commercial exploitation and negative impact on the environment. These by-products are important sources of high value-added ingredients, including anthocyanins and pectins that can be of particular interest to the food industry as functional colourants, emulsifiers, and additives.

Scope and approach
This review curates recent advances in the valorisation of fig by-products as valuable sources of bioactive molecules for functional food development. Special attention was given to widely used extraction processes, main bioactive compounds, relevant biological properties, and the application of recovered bioactives for functional food development.

Key findings and conclusions
Fig by-products are essential sources of structurally diverse bioactive molecules with unique antidiabetic, anti-inflammatory, anti-tumour, immunomodulatory and cardioprotective properties. Owing to these health-promoting potentials, an integral valorisation approach involving sustainable technologies to recover these high value-added ingredients and its utilisation in novel food formulation development should be further stimulated.


Tuesday, 1 November 2022

Marine Macrolides to Tackle Antimicrobial Resistance of Mycobacterium tuberculosis

 Mar. Drugs 2022, 20(11), 691


Tuberculosis has become a major health problem globally. This is worsened by the emergence of resistant strains of Mycobacterium tuberculosis showing ability to evade the effectiveness of the current antimycobacterial therapies. Therefore, the efforts carried out to explore new entities from many sources, including marine, are critical. This review summarizes several marine-derived macrolides that show promising activity against M. tuberculosis. We also provide information regarding the biosynthetic processes of marine macrolides, including the challenges that are usually experienced in this process. As most of the studies reporting the antimycobacterial activities of the listed marine macrolides are based on in vitro studies, the future direction should consider expanding the trials to in vivo and clinical trials. In addition, in silico studies should also be explored for a quick screening on marine macrolides with potent activities against mycobacterial infection. To sum up, macrolides derived from marine organisms might become therapeutical options for tackling antimycobacterial resistance of M. tuberculosis.

Thursday, 27 October 2022

A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications

 Materials Today, 33, 2022, 104747




Nanobiotechnology has recently gained prominence as a fundamental branch of modern science and a novel epoch in the field of material researches. Due to a wide range of applications it attracts attention of many scientists from all over the world. Bionanomaterials are prepared using a variety of physical, chemical, and biological techniques and methods. Many different metal and metal oxide nanoparticles are reported to be produced by biological systems, including bacteria, fungi, actinomycetes, yeasts, viruses, and plants. Among all of them, biocompatible zinc oxide nanoparticles (ZnO NPs), obtained through biosynthesis with the aid of plant-derived materials, appears to be a highly successful way to create a fast, clean, non-toxic, and environmentally friendly platform for the production and application of these bionanomaterials. This review focuses on the plant extract-derived ZnO NPs synthesis, with a special emphasis on the recent advances and applications of these nanomaterials.






Sunday, 23 October 2022

The International Natural Product Sciences Taskforce (INPST) and the power of Twitter networking exemplified through #INPST hashtag analysis

Phytomedicine, 108, 154520, 2023




Background
The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled “International Natural Product Sciences Taskforce” (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools.

Methods
In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week “2021 INPST Twitter Networking Event” (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST.

Results and Conclusion
The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events.


Saturday, 22 October 2022

Special Issue "Cyclodextrins: Structure, Properties and Applications"

 


Cyclodextrins (CD) are cyclic oligomers of α-d-glucopyranose that are obtained through biotechnological processes through bacterial action on starch. What was initially considered a scientific curiosity (its ability to form inclusion complexes with a great diversity of molecules) ended up being shown as the cause of its technological applicability. This means that in the last four decades there has been a progressive increase in scientific publications, review articles and patents directly related to CDs (synthesis, structure, properties, formation of host:guest complexes and applications).
In this Special Issue of Compounds, we intend to compile original scientific articles, communications and bibliographic reviews that deal precisely with cyclodextrins (both as regards their structure, their properties, and their applications).

Sunday, 16 October 2022

Comparison of Chromatic and Spectrophotometric Properties of White and Red Wines Produced in Galicia (Northwest Spain) by Applying PCA

Molecules 2022, 27(20), 7000



Wine is a complex matrix composed of numerous substances and color has an important influence on its quality and consumer acceptance. Color is affected by numerous factors such as pre-fermentation and fermentation operations, ageing, contact or addition of certain substances. In this study, different chromatic parameters were determined in 99 wines (58 red and 41 white) made from Galician (Northwest Spain) grape varieties. These parameters were obtained by using simple, rapid, and inexpensive spectrophotometric methodologies: color intensity, hue, total polyphenols content (Total Polyphenol Index TPI, Folin–Ciocalteu index, FCI), total anthocyans, total tannins, and color coordinates measured by the CIELab system. The influence of ageing in barrels (red wines) or using chips (white and red wines) on these parameters was also studied. A principal component analysis (PCA) was carried out to characterize the wines according to their chromatic characteristics. Application of PCA to the experimental data resulted in satisfactory classifications of studied white and red wines according to the cited enological practices.


Tuesday, 11 October 2022

Advances in Fungal Phenaloenones—Natural Metabolites with Great Promise: Biosynthesis, Bioactivities, and an In Silico Evaluation of Their Potential as Human Glucose Transporter 1 Inhibitors

Molecules 2022, 27(20), 6797



Phenaloenones are structurally unique aromatic polyketides that have been reported in both microbial and plant sources. They possess a hydroxy perinaphthenone three-fused-ring system and exhibit diverse bioactivities, such as cytotoxic, antimicrobial, antioxidant, and anti-HIV properties, and tyrosinase, α-glucosidase, lipase, AchE (acetylcholinesterase), indoleamine 2,3-dioxygenase 1, angiotensin-I-converting enzyme, and tyrosine phosphatase inhibition. Moreover, they have a rich nucleophilic nucleus that has inspired many chemists and biologists to synthesize more of these related derivatives. The current review provides an overview of the reported phenalenones with a fungal origin, including their structures, sources, biosynthesis, and bioactivities. Moreover, more than 135 metabolites have been listed, and 71 references have been cited. SuperPred, an artificial intelligence (AI) webserver, was used to predict the potential targets for selected phenalenones. Among these targets, we chose human glucose transporter 1 (hGLUT1) for an extensive in silico study, as it shows high probability and model accuracy. Among them, aspergillussanones C (60) and G (60) possessed the highest negative docking scores of −15.082 and −14.829 kcal/mol, respectively, compared to the native inhibitor of 5RE (score: −11.206 kcal/mol). The MD (molecular dynamics) simulation revealed their stability in complexes with GLUT1 at 100 ns. The virtual screening study results open up a new therapeutic approach by using some phenalenones as hGLUT1 inhibitors, which might be a potential target for cancer therapy.

Saturday, 8 October 2022

Royal Jelly: Beneficial Properties and Synergistic Effects with Chemotherapeutic Drugs with Particular Emphasis in Anticancer Strategies

 Nutrients 2022, 14(19), 4166


Cancer is one of the major causes of death globally. Currently, various methods are used to treat cancer, including radiotherapy, surgery, and chemotherapy, all of which have serious adverse effects. A healthy lifestyle, especially a nutritional diet, plays a critical role in the treatment and prevention of many disorders, including cancer. The above notion, plus the trend in going back to nature, encourages consumers and the food industry to invest more in food products and to find potential candidates that can maintain human health. One of these agents, and a very notable food agent, is royal jelly (RJ), known to be produced by the hypopharyngeal and mandibular salivary glands of young nurse honeybees. RJ contains bioactive substances, such as carbohydrates, protein, lipids, peptides, mineral salts and polyphenols which contribute to the appreciated biological and pharmacological activities. Antioxidant, anticancer, anti-inflammatory, antidiabetic, and antibacterial impacts are among the well-recognized benefits. The combination of RJ or its constituents with anticancer drugs has synergistic effects on cancer disorders, enhancing the drug’s effectiveness or reducing its side effects. The purpose of the present review is to emphasize the possible interactions between chemotherapy and RJ, or its components, in treating cancer illnesses.



Friday, 7 October 2022

The Chemical, Microbiological and Volatile Composition of Kefir-like Beverages Produced from Red Table Grape Juice in Repeated 24-h Fed-Batch Subcultures

 Foods 2022, 11(19), 3117


The aim of this work was to study the production of kefir-like beverages via the fed-batch fermentation of red table grape juice at initial pHs of 3.99 (fermentation A) and 5.99 (fermentation B) with kefir grains during 4 repeated 24-h fed-batch subcultures. All kefir-like beverages (KLB) were characterized by low alcoholic grade (≤3.6%, v/v) and lactic and acetic acid concentrations. The beverages obtained from fermentation B had lower concentrations of sugars and higher microbial counts than the KLB obtained in fermentation A. Additionally, the KLB samples from fermentation B were the most aromatic and had the highest contents of alcohols, esters, aldehydes and organic acids, in contrast with the nonfermented juice and KLB from fermentation A. These results indicate the possibility of obtaining red table grape KLB with their own distinctive aromatic characteristics and high content in probiotic viable cells, contributing to the valorization of this fruit.

Saturday, 1 October 2022

From Tradition to Health: Chemical and Bioactive Characterization of Five Traditional Plants

Molecules 2022, 27(19), 6495



Several scientific studies have been proving the bioactive effects of many aromatic and medicinal plants associated with the presence of a high number of bioactive compounds, namely phenolic compounds. The antioxidant, anti-inflammatory, and antimicrobial capacities of these molecules have aroused high interest in some industrial sectors, including food, pharmaceuticals, and cosmetics. This work aimed to determine the phenolic profiles of the infusions and hydroethanolic extracts of five plants (Carpobrotus edulis, Genista tridentata, Verbascum sinuatum, Cytisus multiflorus, and Calluna vulgaris) that have been employed in many traditional preparations. In addition, the antioxidant, antimicrobial, anti-inflammatory, and anti-tumoral activity of each different preparation was evaluated using in vitro assays. The HPLC-DAD-ESI/MS profile revealed the presence of eighty phenolic compounds, belonging to seven different families of compounds. Regarding antioxidant properties, the hydroethanolic extract of C. edulis showed a potent effect in the TBARS assay (IC50 = 1.20 µg/mL), while G. tridentata hydroethanolic extract achieved better results in the OxHLIA test (IC50 = 76 µg/mL). For cytotoxic and anti-inflammatory results, V. sinuatum infusions stood out significantly, with GI50 = 59.1–92.1 µg/mL and IC50 = 121.1 µg/mL, respectively. Finally, C. edulis hydroethanolic extract displayed the most relevant antibacterial activity, showing MBC values of 0.25–1 mg/mL, while G. tridentata hydroethanolic extract exerted the greatest antifungal effects (MFC of 0.5–1 mg/mL). The results of this study deepen the knowledge of the phenolic profiles and also provide evidence on the bioactive properties of the species selected, which could be considered highly valuable options for research and application in several sectors, namely food, cosmetics, and pharmaceuticals.


Friday, 30 September 2022

Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids- a comprehensive update

 The Journal of Nutritional Biochemistry, 110, 109147, 2022


Gout is an inflammatory disease caused by metabolic disorder or genetic inheritance. People throughout the world are strongly dependent on ethnomedicine for the treatment of gout and some receive satisfactory curative treatment. The natural remedies as well as established drugs derived from natural sources or synthetically made exert their action by mechanisms that are closely associated with anticancer treatment mechanisms regarding inhibition of xanthine oxidase, feedback inhibition of de novo purine synthesis, depolymerization and disappearance of microtubule, inhibition of NF-ĸB activation, induction of TRAIL, promotion of apoptosis, and caspase activation and proteasome inhibition. Some anti-gout and anticancer novel compounds interact with same receptors for their action, e.g., colchicine and colchicine analogues. Dietary flavonoids, i.e., chrysin, kaempferol, quercetin, fisetin, pelargonidin, apigenin, luteolin, myricetin, isorhamnetin, phloretinetc etc. have comparable IC50 values with established anti-gout drug and effective against both cancer and gout. Moreover, a noticeable number of newer anticancer compounds have already been isolated from plants that have been using by local traditional healers and herbal practitioners to treat gout. Therefore, the anti-gout plants might have greater potentiality to become selective candidates for screening of newer anticancer leads.


Thursday, 22 September 2022

Polyphenols as possible alternative agents in chronic fatigue: a review

Phytochemistry Reviews, 2022




Chronic fatigue syndrome (CFS) is a pathological state of extreme tiredness that lasts more than six months and may possess an impact on the social, emotional, or occupational functioning of an individual. CFS is characterized by profound disabling fatigue associated with infectious, rheumatological, and neurological symptoms. The current pharmacological treatment for CFS does not offer a complete cure for the disease, and none of the available treatments show promising results. The exact mechanism of the pathogenesis of the disease is still unknown, with current suggestions indicating the overlapping roles of the immune system, central nervous system, and neuroendocrine system. However, the pathological mechanism revolves around inflammatory and oxidative stress markers. Polyphenols are the most abundant secondary metabolites of plant origin, with potent antioxidant and anti-inflammatory effects, and can exert protective activity against a whole range of disorders. The current review is aimed at highlighting the emerging role of polyphenols in CFS from both preclinical and clinical studies. Numerous agents of this class have shown promising results in different in vitro and in vivo models of chronic fatigue/CFS, predominantly by counteracting oxidative stress and the inflammatory cascade. The clinical data in this regard is still very limited and needs expanding through randomized, placebo-controlled studies to draw final conclusions on whether polyphenols may be a class of clinically effective nutraceuticals in patients with CFS.


Tuesday, 23 August 2022

Hepatoprotective Mechanism of Ginsenoside Rg1 against Alcoholic Liver Damage Based on Gut Microbiota and Network Pharmacology

 Oxidative Medicine and Cellular Longevity, 2022, 5025237




Alcoholic liver disease (ALD) is a major public health problem worldwide, which needs to be effective prevention. Ginsenoside Rg1 (GRg1), a bioactive ingredient extracted from ginseng, has benefit effects on health. In this study, 11 potential targets of GRg1 against ALD were firstly obtained by network pharmacology. KEGG pathway enrichment showed that GRg1-target-ALD was closely related to Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signaling pathways. In addition, GRg1 decreased antioxidant levels and increased oxidative levels in alcohol-treated mice, which alleviated oxidative stress-induced hepatic damage. GRg1 enhanced intestinal barrier function via upregulating the levels of tight junction protein and immunoglobulin A. GRg1 also reduced alcohol-induced inflammation by suppressing TLR4/NF-κB pathway, which was consistent with the prediction of network targets. Moreover, GRg1 altered GM population, and Verrucomicrobia, Bacteroidetes, Akkermansia, Bacteroides, Lachnospiraceae_NK4A136_group, and Alloprevotella played positive association with intestinal barrier indicators and negative correlation with hepatic inflammation biomarkers. The results suggest that GRg1 administration might be a promising strategy for protection of alcohol-induced liver damage.

Monday, 1 August 2022

Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective

 Science of the Total Environment, 821, 153472. 2022


Background

Antibiotic resistance is one of the current threats to human health, forcing the use of drugs that are more noxious, costlier, and with low efficiency. There are several causes behind antibiotic resistance, including over-prescription of antibiotics in both humans and livestock. In this scenario, researchers are shifting to new alternatives to fight back this concerning situation.


Scope and approach

Nanoparticles have emerged as new tools that can be used to combat deadly bacterial infections directly or indirectly to overcome antibiotic resistance. Although nanoparticles are being used in the pharmaceutical industry, there is a constant concern about their toxicity toward human health because of the involvement of well-known toxic chemicals (i.e., sodium/potassium borohydride) making their use very risky for eukaryotic cells.


Key findings and conclusions

Multiple nanoparticle-based approaches to counter bacterial infections, providing crucial insight into the design of elements that play critical roles in the creation of antimicrobial nanotherapeutic drugs, are currently underway. In this context, plant-based nanoparticles will be less toxic than many other forms, which constitute promising candidates to avoid widespread damage to the microbiome associated with current practices. This article aims to review the actual knowledge on plant-based nanoparticle products for antibiotic resistance and the possible replacement of antibiotics to treat multidrug-resistant bacterial infections.

Tuesday, 26 July 2022

Advances on Natural Abietane, Labdane and Clerodane Diterpenes as Anti-Cancer Agents: Sources and Mechanisms of Action

Molecules 2022, 27(15), 4791



Extensive research over the past decades has identified numerous phytochemicals that could represent an important source of anti-cancer compounds. There is an immediate need for less toxic and more effective preventive and therapeutic strategies for the treatment of cancer. Natural compounds are considered suitable candidates for the development of new anti-cancer drugs due to their pleiotropic actions on target events with multiple manners. This comprehensive review highlighted the most relevant findings achieved in the screening of phytochemicals for anticancer drug development, particularly focused on a promising class of phytochemicals such as diterpenes with abietane, clerodane, and labdane skeleton. The chemical structure of these compounds, their main natural sources, and mechanisms of action were critically discussed.


Friday, 8 July 2022

The influence of phytochemicals on cell heterogeneity in chronic inflammation-associated diseases: the prospects of single cell sequencing

 The Journal of Nutritional Biochemistry, 108, 109091, 2022


Chronic inflammation-associated diseases include, but is not limited to cardiovascular disease, cancer, obesity, diabetes, etc. Cell heterogeneity is a prerequisite for understanding the physiological and pathological development of cell metabolism, and its response to external stimuli. Recently, dietary habits based on phytochemicals became increasingly recognized to play a pivotal role in chronic inflammation. Phytochemicals can relieve chronic inflammation by regulating inflammatory cell differentiation and immune cell response, but the influence of phytochemicals on cell heterogeneity from in vitro and ex vivo studies cannot simulate the complexity of cell differentiation in vivo due to the differences in cell lines and extracellular environment. Therefore, there is no consensus on the regulation mechanism of phytochemicals on chronic diseases based on cell heterogeneity. The purpose of this review is to summarize cell heterogeneity in common chronic inflammation-associated diseases and trace the effects of phytochemicals on cell differentiation in chronic diseases development. More importantly, by discussing the problems and challenges which hinder the study of cell heterogeneity in recent nutritional assessment experiments, we propose new prospects based on the drawbacks of existing research to optimize the research on the regulation mechanism of phytochemicals on chronic diseases. The need to explore precise measurements of cell heterogeneity is a key pillar in understanding the influence of phytochemicals on certain diseases. In the future, deeper understanding of cell-to-cell variation and the impact of food components and their metabolites on cell function by single-cell genomics and epigenomics with the focus on individual differences will open new avenues for the next generation of health care.

Friday, 1 July 2022

Biological properties and potential of compounds extracted from red seaweeds

 Phytochemistry Reviews, 2022



Macroalgae have been recently used for different applications in the food, cosmetic and pharmaceutical industry since they do not compete for land and freshwater against other resources. Moreover, they have been highlighted as a potential source of bioactive compounds. Red algae (Rhodophyta) are the largest group of seaweeds, including around 6000 different species, thus it can be hypothesized that they are a potential source of bioactive compounds. Sulfated polysaccharides, mainly agar and carrageenans, are the most relevant and exploited compounds of red algae. Other potential molecules are essential fatty acids, phycobiliproteins, vitamins, minerals, and other secondary metabolites. All these compounds have been demonstrated to exert several biological activities, among which antioxidant, anti-inflammatory, antitumor, and antimicrobial properties can be highlighted. Nevertheless, these properties need to be further tested on in vivo experiments and go in-depth in the study of the mechanism of action of the specific molecules and the understanding of the structure–activity relation. At last, the extraction technologies are essential for the correct isolation of the molecules, in a cost-effective way, to facilitate the scale-up of the processes and their further application by the industry. This manuscript is aimed at describing the fundamental composition of red algae and their most studied biological properties to pave the way to the utilization of this underused resource.

Wednesday, 29 June 2022

Fu Brick Tea Manages HFD/STZ-Induced Type 2 Diabetes by Regulating the Gut Microbiota and Activating the IRS1/PI3K/Akt Signaling Pathway

 J. Agric. Food Chem. 2022, 70, 27, 8274–8287




The antidiabetic effects of Fu brick tea aqueous extract (FTE) and its underlying molecular mechanism in type 2 diabetes mellitus (T2DM) mice were investigated. FTE treatment significantly relieved dyslipidemia, insulin resistance (IR), and hepatic oxidative stress caused by T2DM. FTE also ameliorated the T2DM-induced gut dysbiosis by decreasing the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and promoting the proliferation of Bifidobacterium, Parabacteroides, and Roseburia at the genus level. Besides, FTE significantly improved colonic short-chain fatty acid levels of T2DM mice. Furthermore, the antidiabetic effects of FTE were proved to be mediated by the IRS1/PI3K/Akt and AMPK-mediated gluconeogenesis signaling pathways. Metabolomics analysis illustrated that FTE recovered the levels of 28 metabolites associated with T2DM to the levels of normal mice. Taken together, these findings suggest that FTE can alleviate T2DM by reshaping the gut microbiota, activating the IRS1/PI3K/Akt pathway, and regulating intestinal metabolites.


Friday, 10 June 2022

Lobularia libyca: Phytochemical Profiling, Antioxidant and Antimicrobial Activity Using In Vitro and In Silico Studies

Molecules 2022, 27(12), 3744



Lobularia libyca (L. libyca) is a traditional plant that is popular for its richness in phenolic compounds and flavonoids. The aim of this study was to comprehensively investigate the phytochemical profile by liquid chromatography, electrospray ionization and tandem mass spectrometry (LC-ESI-MS), the mineral contents and the biological properties of L. libyca methanol extract. L. libyca contains significant amounts of phenolic compounds and flavonoids. Thirteen compounds classified as flavonoids were identified. L. libyca is rich in nutrients such as Na, Fe and Ca. Moreover, the methanol extract of L. libyca showed significant antioxidant activity without cytotoxic activity on HCT116 cells (human colon cancer cell line) and HepG2 cells (human hepatoma), showing an inhibition zone of 13 mm in diameter. In silico studies showed that decanoic acid ethyl ester exhibited the best fit in β-lactamase and DNA gyrase active sites; meanwhile, oleic acid showed the best fit in reductase binding sites. Thus, it can be concluded that L. libyca can serve as a beneficial nutraceutical agent, owing to its significant antioxidant and antibacterial potential and due to its richness in iron, calcium and potassium, which are essential for maintaining a healthy lifestyle.


Saturday, 4 June 2022

Journal of Nanobiotechnology 20, 254 (2022)




Nano-priming is an innovative seed priming technology that helps to improve seed germination, seed growth, and yield by providing resistance to various stresses in plants. Nano-priming is a considerably more effective method compared to all other seed priming methods. The salient features of nanoparticles (NPs) in seed priming are to develop electron exchange and enhanced surface reaction capabilities associated with various components of plant cells and tissues. Nano-priming induces the formation of nanopores in shoot and helps in the uptake of water absorption, activates reactive oxygen species (ROS)/antioxidant mechanisms in seeds, and forms hydroxyl radicals to loosen the walls of the cells and acts as an inducer for rapid hydrolysis of starch. It also induces the expression of aquaporin genes that are involved in the intake of water and also mediates H2O2, or ROS, dispersed over biological membranes. Nano-priming induces starch degradation via the stimulation of amylase, which results in the stimulation of seed germination. Nano-priming induces a mild ROS that acts as a primary signaling cue for various signaling cascade events that participate in secondary metabolite production and stress tolerance. This review provides details on the possible mechanisms by which nano-priming induces breaking seed dormancy, promotion of seed germination, and their impact on primary and secondary metabolite production. In addition, the use of nano-based fertilizer and pesticides as effective materials in nano-priming and plant growth development were also discussed, considering their recent status and future perspectives.


Friday, 3 June 2022

Novel hydrophobic colorimetric films based on ethylcellulose/castor oil/anthocyanins for pork freshness monitoring

 LWT, 164, 2022, 113631




A novel hydrophobic colorimetric film was developed using ethyl cellulose (EC), castor oil (CO) and purple potato anthocyanin (AN) for pork freshness monitoring. The films with CO concentrations of 0% (control), 0.25%, 0.5%, 1% and 2% were developed and expressed as F0, F0.25, F0.5, F1 and F2. Scanning electron microscopy (SEM) images showed that the five films had dense surface and porous internal structures. The F0.5 film exhibited the highest tensile strength (TS) value, optimal color stability, ability to prevent the leaching of AN. The limit of detection (LOD) value of the F0.5 film to ammonia gas was 1.04 μM. The color of F0.5 film turned from red to green along with the spoilage of pork. As a result, the film was expected to be a good colorimetric indicator of pork freshness for intelligent packaging.


Wednesday, 18 May 2022

Green Synthesis of Silver Nanoparticles Using Allium cepa var. Aggregatum Natural Extract: Antibacterial and Cytotoxic Properties

 Nanomaterials 2022, 12(10), 1725




The chemical content of plant excerpts can be efficiently employed to reduce the metal ions to nanoparticles in the one-pot green production method. Here, green production of silver nanoparticles (AC-AgNPs) is performed by means of Allium cepa var. Aggregatum (shallot) extract as a stabilizer and reducer. The shape, size, and morphology of resultant AC-AgNPs are examined by optical spectroscopy analysis such as UV for nucleation and coalescence processes of the AC-AgNPs. Through FTIR functional group is determined and through DLS size is defined, it was confirmed that metallic AgNPs were successfully synthesized through the green synthesis route, and these results agreed well with the results obtained in the XRD pattern along with TEM spectroscopy, where the TEM images confirm the formation of sphere-like nanostructures along with SAED analysis. The chemical characterization is performed with XPS; the obtained molecular species in the materials are determined from the energy profile. Antioxidant activity of AC-AgNPs versus DPPH substrate is carried out. Antibacterial activity is well established against Gram-negative and Gram-positive organisms. Cell viability is accomplished, followed by an MTT assay, and a cytotoxicity assay of AC-AgNPs on MCF—7 cell lines is also carried out. Highlights: (1). This study highlights the eco-friendly synthesis of silver nanoparticles from Allium cepa var. Aggregatum Natural Extract. (2). The synthesized AC-AgNPs were characterized by UV-VIS, FT-IR, XRD, TEM, and XPS. (3). The synthesized nanoparticles were well dispersed in nature and the size range of 35 ± 8 nm. (4). The anti-candidal activity of biosynthesized silver nanoparticles was evaluated against the following Gram-Negative organisms: Escherichia coli (E. coli), and the following Gram-positive organisms: Staphylococcus aureus strains. The biosynthesized AC-AgNPs showed enhanced antiseptic features anti both Gram-positive and negative organisms. (5). Besides, the in vitro cytotoxic outcomes of AC-AgNPs were assessed versus MCF-7 cancerous cells, and the reduction in the feasibility of cancer cells was established via MTT assay, which suggests potential biomedical applications.


Friday, 13 May 2022

Nutmeg (Myristica fragrans Houtt.) essential oil: A review on its composition, biological, and pharmacological activities

Phytotherapy Research, 36, 2839-2851, 2022


Myristica fragrans (Houtt.) is an evergreen tree native to the Maluku Islands, Indonesia. M. fragrans kernel is extensively used in Indian traditional medicines to treat various diseases. Several studies attempt to compile and interpret the pharmacological potential of Myristica fragrans (Houtt.) aqueous and various chemical extracts. Thus, the pharmacological potential of nutmeg essential oil has not been reviewed phytochemically and pharmacologically. Therefore, the present study aimed to share appropriate literature evidence regarding the plant essential oil chemical composition and therapeutic potential of Myristica fragrans essential oil (MFEO). MFEO of leaf, mace, kernel, and seed were used worldwide as potential Ayurvedic medicine and fragrance. MFEO extracted by various methods and oil yield was 0.7–3.2, 8.1–10.3, 0.3–12.5, and 6.2–7.6% in leaf, mace, seed, and kernel. The primary chemical constituents of MFEO were sabinene, eugenol, myristicin, caryophyllene, β-myrcene, and α-pinene. Clinical and experimental investigations have confirmed the antioxidant, antimicrobial, antiinflammatory, anticancer, antimalarial, anticonvulsant, hepatoprotective, antiparasitic, insecticidal, and nematocidal activities of MFEO. It is the first attempt to compile oil yield, composition, and the biological activities of MFEO. In future, several scientific investigations are required to understand the mechanism of action of MFEO and their bioactive constituents.

Wednesday, 11 May 2022

Fruit Juice Industry Wastes as a Source of Bioactives

 J. Agric. Food Chem. 2022, 70, 23, 6805–6832




Food processing sustainability, as well as waste minimization, are key concerns for the modern food industry. A significant amount of waste is generated by the fruit juice industry each year. In addition to the economic losses caused by the removal of these wastes, its impact on the environment is undeniable. Therefore, researchers have focused on recovering the bioactive components from fruit juice processing, in which a great number of phytochemicals still exist in the agro-industrial wastes, to help minimize the waste burden as well as provide new sources of bioactive compounds, which are believed to be protective agents against certain diseases such as cardiovascular diseases, cancer, and diabetes. Although these wastes contain non-negligible amounts of bioactive compounds, information on the utilization of these byproducts in functional ingredient/food production and their impact on the sensory quality of food products is still scarce. In this regard, this review summarizes the most recent literature on bioactive compounds present in the wastes of apple, citrus fruits, berries, stoned fruits, melons, and tropical fruit juices, together with their extraction techniques and valorization approaches. Besides, on the one hand, examples of different current food applications with the use of these wastes are provided. On the other hand, the challenges with respect to economic, sensory, and safety issues are also discussed.


Thursday, 28 April 2022

Humic Acids Aggregates as Microheterogeneous Reaction Media: Alkaline Hydrolysis Reactions

 Compounds 2022, 2(2), 131-143


The influence of humic aggregates in a water solution upon the chemical stability under basic conditions of different substrates was reviewed. The kinetic behavior of each substrate was modeled in terms of a micellar pseudophase model.

Wednesday, 27 April 2022

Reactivity of a Recombinant Esterase from Thermus thermophilus HB27 in Aqueous and Organic Media

 Microorganisms 2022, 10(5), 915




The thermoalkalophilic membrane-associated esterase E34Tt from Thermus thermophilus HB27 was cloned and expressed in Kluyveromyces lactis (KLEST-3S esterase). The recombinant enzyme was tested as a biocatalyst in aqueous and organic media. It displayed a high thermal stability and was active in the presence of 10% (v/v) organic solvents and 1% (w/v) detergents. KLEST-3S hydrolysed triglycerides of various acyl chains, which is a rare characteristic among carboxylic ester hydrolases from extreme thermophiles, with maximum activity on tributyrin. It also displayed interfacial activation towards triacetin. KLEST-3S was also tested as a biocatalyst in organic media. The esterase provided high yields for the acetylation of alcohols. In addition, KLEST-3S catalyzed the stereoselective hydrolysis of (R,S)-ibuprofen methyl ester (87% ee). Our results indicate that KLEST-3S may be a robust and efficient biocatalyst for application in industrial bioconversions.


Tuesday, 26 April 2022

Genetic variability, combining ability and molecular diversity-based parental line selection for heterosis breeding in field corn (Zea mays L.)

 Mol Biol Rep 49, 4517–4524 (2022)



Background
The demand of maize crop is increasing day by day, hence to reduce the production and demand gap, there is a need to extract the high yielding parental lines to improve per se yield of the hybrids, which could help to enhance the productivity in maize crops.

Methods and results
The present investigation was carried out to select the best medium maturing inbred lines, among a set of 118 inbred lines. Based on the Duncan multiple range test, out of 118 lines, 16 inbred lines were selected on the basis of its high yield per se and flowering time. The molecular diversity was carried out using SSR markers linked to heterotic QTL and up on diversity analysis it classified selected genotypes in to three distinct groups. Among the selected inbred lines, a wider genetic variability and molecular diversity were observed. A total of 39 test crosses were generated after classifying 16 inbred lines in to three testers and thirteen lines (based on per se grain yield and molecular diversity) and crossing them in line × tester manner.

Conclusion
Combining ability analysis of these parental lines showed that female parents, PML 109, PML 110, PML 111, PML 114 and PML 116 showed additive effect for KRN and grain yield, whereas male parents, PML 46, and PML 93 showed epistatic effect for KRN and PML 102 showed epistatic effect for grain yield. The generated information in the present investigation may be exploited for heterosis breeding in filed corn.

Key messages
To tackle the balanced dietary requirement of Indian population; we focused to enhance the productivity of maize hybrids using genetically broad based, elite, diverse inbred lines. Combination of selection criterion, not only augment the productivity but also improves the quality of hybrid/s.


Thursday, 14 April 2022

Effects of Torreya grandis Kernel Oil on Lipid Metabolism and Intestinal Flora in C57BL/6J Mice

Oxidative Medicine and Cellular Longevity, 2022, 4472751



Background
Recent experimental studies have shown that vegetable oil supplementation ameliorates high-fat diet- (HFD-) induced hyperlipidemia and oxidative stress in mice via modulating hepatic lipid metabolism and the composition of the gut microbiota. The aim of this study was to investigate the efficacy of the Torreya grandis kernel oil (TKO) rich in unpolysaturated fatty acid against hyperlipidemia and gain a deep insight into its potential mechanisms. Methods. Normal mice were randomly divided into three groups: ND (normal diet), LO (normal diet supplement with 4% TKO), and HO (normal diet supplement with 8% TKO). Hyperlipidemia mice were randomly divided into two groups: HFN (normal diet) and HFO (normal diet supplement with 8% TKO). Blood biochemistry and histomorphology were observed; liver RNA-seq, metabolomics, and gut 16S rRNA were analyzed. 

Results
Continuous supplementation of TKO in normal mice significantly ameliorated serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and free fatty acid (FFA) accumulation, decreased blood glucose and malondialdehyde (MDA), and enhanced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels. According to GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, most differentially expressed genes (DEGs) were significantly enriched in the biosynthesis of unsaturated fatty acid pathways, and significantly changed metabolites (SCMs) might be involved in the metabolism of lipids. High-dose TKO improved gut alpha diversity and beta diversity showing that the microbial community compositions of the five groups were different. 

Conclusion
Supplementation of TKO functions in the prevention of hyperlipidemia via regulating hepatic lipid metabolism and enhancing microbiota richness in normal mice. Our study is the first to reveal the mechanism of TKO regulating blood lipid levels by using multiomics and promote further studies on TKO for their biological activity.

Wednesday, 13 April 2022

Ultrasonic-assisted extraction of polyphenolic compounds from Paederia scandens (Lour.) Merr. Using deep eutectic solvent: optimization, identification, and comparison with traditional methods

 Ultrasonics Sonochemistry, 86, 106005, 2022



Ultrasonic-assisted extraction (UAE) coupled with deep eutectic solvent (DES) is a novel, efficient and green extraction method for phytochemicals. In this study, the effects of 16 DESs coupled with UAE on the extraction rate of polyphenols from Paederia scandens (Lour.) Merr. (P. scandens), an edible and medicinal herb, were investigated. DES synthesised with choline chloride and ethylene glycol at a 1:2 M ratio resulted in the highest extractability. Moreover, the effects of extraction parameters were investigated by using a two-level factorial experiment followed by response surface methodology The optimal parameters (water content in DES of 49.2%, the actual ultrasonic power of 72.4 W, and ultrasonic time of 9.7 min) resulted in the optimal total flavonoid content (TFC) (27.04 mg CE/g DW), ferric-reducing antioxidant power (FRAP) value (373.27 μmol Fe(Ⅱ)E/g DW) and 2,2′-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) value (48.64 μmol TE/g DW), closely matching the experimental results. Furthermore, a comparison study demonstrated that DES-UAE afforded the higher TFC and FRAP value than traditional extraction methods. 36 individual polyphenolic compounds were identified and quantified by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in P. scandens extracts, and of which 30 were found in the extracts obtained by DES-UAE. Additionally, DES-UAE afforded the highest sum of individual polyphenolic compound content. These results revealed that DES-UAE enhanced the extraction efficiency for polyphenols and provided a scientific basis for further processing and utilization of P. scandens.

Wednesday, 6 April 2022

Blockchain: An emerging novel technology to upgrade the current fresh fruit supply chain

 Trends in Food Science & Technology, 124, 1-12, 2022


Background
With the globalization of trade, the current fresh fruit supply chain now incorporates multiple entities, wide distribution, and intricate transactions. This brings about the issues of information tamper resistance, supply-demand relationship, and traceable supervision. Blockchain is a distributed ledger technology with advantages of tamper resistance of information. It is expected to solve the problem of transaction resource allocation among several untrusted participants in the fresh fruit supply chain.

Scope and approach
This article recommends the use of blockchain to upgrade the current fresh fruit supply chain, and highlights the advantages of blockchain in supply chain management. The obstacles faced by the implementation of this technology in relation to participants’ attitude, fruit preservation, and blockchain technical loopholes have been analyzed as well.

Key findings and conclusions
Blockchain can upgrade fresh fruit supply chain. It collects and uploads reliable data from fruit picking to final consumption through IoT-related technologies. After hash encryption and consensus verification, it is transmitted to P2P network for sharing. It balances the tension between supply and demand, brings funds for enterprises, simplifies supervision and traceability. Smart contracts reduce the cost of communication and trust. However, blockchain has some limitations such as difficulties in incorporating architecture, reliance on the IoT, immature fruit preservation technology, unclear legal supervision, lack of reference cases, and technical loopholes.


Wednesday, 23 March 2022

Anti-Depressant Properties of Crocin Molecules in Saffron

Molecules 2022, 27(7), 2076



Saffron is a valued herb, obtained from the stigmas of the C. sativus Linn (Iridaceae), with therapeutic effects. It has been described in pharmacopoeias to be variously acting, including as an anti-depressant, anti-carcinogen, and stimulant agent. The therapeutic effects of saffron are harbored in its bioactive molecules, notably crocins, the subject of this paper. Crocins have been demonstrated to act as a monoamine oxidase type A and B inhibitor. Furthermore, saffron petal extracts have experimentally been shown to impact contractile response in electrical field stimulation. Other research suggests that saffron also inhibits the reuptake of monoamines, exhibits N-methyl-d-aspartate antagonism, and improves brain-derived neurotrophic factor signaling. A host of experimental studies found saffron/crocin to be similarly effective as fluoxetine and imipramine in the treatment of depression disorders. Saffron and crocins propose a natural solution to combat depressive disorders. However, some hurdles, such as stability and delivery, need to be overcome.


Tuesday, 15 March 2022

Natural Polyphenols for the Preservation of Meat and Dairy Products

 Molecules 2022, 27(6), 1906



Food spoilage makes foods undesirable and unacceptable for human use. The preservation of food is essential for human survival, and different techniques were initially used to limit the growth of spoiling microbes, e.g., drying, heating, salting, or fermentation. Water activity, temperature, redox potential, preservatives, and competitive microorganisms are the most important approaches used in the preservation of food products. Preservative agents are generally classified into antimicrobial, antioxidant, and anti-browning agents. On the other hand, artificial preservatives (sorbate, sulfite, or nitrite) may cause serious health hazards such as hypersensitivity, asthma, neurological damage, hyperactivity, and cancer. Thus, consumers prefer natural food preservatives to synthetic ones, as they are considered safer. Polyphenols have potential uses as biopreservatives in the food industry, because their antimicrobial and antioxidant activities can increase the storage life of food products. The antioxidant capacity of polyphenols is mainly due to the inhibition of free radical formation. Moreover, the antimicrobial activity of plants and herbs is mainly attributed to the presence of phenolic compounds. Thus, incorporation of botanical extracts rich in polyphenols in perishable foods can be considered since no pure polyphenolic compounds are authorized as food preservatives. However, individual polyphenols can be screened in this regard. In conclusion, this review highlights the use of phenolic compounds or botanical extracts rich in polyphenols as preservative agents with special reference to meat and dairy products.

Saturday, 12 March 2022

Ethnobotanical and phytochemical aspects of the edible herb Coriandrum sativum L.

 Journal of Food Science, 87(4), 2022, 1386-1422



Coriandrum sativum (coriander) is an edible herb in the family Apiaceae. The leaves, fruits, and stems of C. sativum have long been used as culinary spice due to their favorable odor. Traditional practitioners used this plant for treating different diseases like blepharitis, scabies, aphthous stomatitis, laryngitis, headache, and palpitation. In modern researches, coriander has demonstrated anxiolytic, anticonvulsant, antimigraine, neuroprotective, analgesic, diuretic, hypoglycemic, hypolipidemic, hypotensive, anticancer, and antioxidant activities. Coriander contains a wide range of bioactive phytochemicals among which phenylpropenes, terpenoids, isocoumarins, phytosterols, and fatty acids are the most important. This review provides information about the botanical and ethnobotanical aspects, chemical profile, therapeutic uses in Islamic traditional medicine (ITM), and recent pharmacological studies of coriander effects. The results have shown that coriander and its monoterpenoid compound, linalool, can be considered as potential drug candidates for treating metabolic syndrome and different inflammatory conditions especially neural and CNS diseases.


Friday, 18 February 2022

Extraction of the wheat straw hemicellulose fraction assisted by commercial endo-xylanases. Role of the accessory enzyme activities

 Industrial Crops and Products, 179, 2022, 114655




Wheat straw is a highly promising raw material for bio-refinery strategies. Most of the literature related to lignocellulose fractionation focuses on cellulose purification and hemicellulose solubilization. Pre-treatments for hemicellulose solubilization without the formation of undesired products usually reach low extraction yields, which leaves an important hemicellulose fraction unused. In this work, we propose a mild process for the efficient extraction of the hemicellulose fraction of wheat straw assisted by partial enzymatic hydrolysis with three commercial endo-xylanase cocktails. A first step with alkali at 40 ºC helped to disrupt the lignocellulosic structure and removed 19% of lignin while maintaining most of the hemicellulose in the solid. The enzymatic step enabled reaching extraction yields of 59.8%, 51.9%, and 42.5% with Ultraflo L, Pentopan mono conc, and Shearzyme 500L, respectively. We also discuss the catalytic properties of each endo-xylanase, in particular, their adscription to the GH10 or GH11 glycosyl hydrolase family, and the relevant role of accessory enzymes.