Wednesday 14 December 2022

Global Solar Irradiation Modelling and Prediction Using Machine Learning Models for Their Potential Use in Renewable Energy Applications

 Mathematics 2022, 10(24), 4746




Global solar irradiation is an important variable that can be used to determine the suitability of an area to install solar systems; nevertheless, due to the limitations of requiring measurement stations around the entire world, it can be correlated with different meteorological parameters. To confront this issue, different locations in Rias Baixas (Autonomous Community of Galicia, Spain) and combinations of parameters (month and average temperature, among others) were used to develop various machine learning models (random forest -RF-, support vector machine -SVM- and artificial neural network -ANN-). These three approaches were used to model and predict (one month ahead) monthly global solar irradiation using the data from six measurement stations. Afterwards, these models were applied to seven different measurement stations to check if the knowledge acquired could be extrapolated to other locations. In general, the ANN models offered the best results for the development and testing phases of the model, as well as for the phase of knowledge extrapolation to other locations. In this sense, the selected ANNs obtained a mean absolute percentage error (MAPE) value between 3.9 and 13.8% for the model development and an overall MAPE between 4.1 and 12.5% for the other seven locations. ANNs can be a capable tool for modelling and predicting monthly global solar irradiation in areas where data are available and for extrapolating this knowledge to nearby areas.


Monday 12 December 2022

Host–Guest Complexes

 Int. J. Mol. Sci. 2022, 23(24), 15730



This article belongs to the Special Issue Host-Guest Complexes and corresponds with the special issue editorial. In this Special Issue, we hope to address both the structural aspects of the formation and stability of these inclusion complexes as well as the energetic aspects associated with them, together with the different instrumental techniques used to characterise them, addressing the aspects related to molecular recognition and conformational switching. Of course, we must also take into account the aspects related to the technological applications of these compounds. In fact, they show important potentialities in topics such as superconductivity phenomena, the design of sensors, and food chemistry, agricultural chemistry, or their applications in matters of the environment.

Friday 2 December 2022

Comparison of machine learning techniques for reservoir outflow forecasting

 Nat. Hazards Earth Syst. Sci., 22, 3859–3874, 2022


Reservoirs play a key role in many human soci- eties due to their capability to manage water resources. In addition to their role in water supply and hydropower pro- duction, their ability to retain water and control the flow makes them a valuable asset for flood mitigation. This is a key function, since extreme events have increased in the last few decades as a result of climate change, and therefore, the application of mechanisms capable of mitigating flood dam- age will be key in the coming decades. Having a good esti- mation of the outflow of a reservoir can be an advantage for water management or early warning systems. When histori- cal data are available, data-driven models have been proven a useful tool for different hydrological applications. In this sense, this study analyzes the efficiency of different machine learning techniques to predict reservoir outflow, namely mul- tivariate linear regression (MLR) and three artificial neu- ral networks: multilayer perceptron (MLP), nonlinear au- toregressive exogenous (NARX) and long short-term mem- ory (LSTM). These techniques were applied to forecast the outflow of eight water reservoirs of different characteristics located in the Miño River (northwest of Spain). In general, the results obtained showed that the proposed models pro- vided a good estimation of the outflow of the reservoirs, im- proving the results obtained with classical approaches such as to consider reservoir outflow equal to that of the previous day. Among the different machine learning techniques anaAbstract. Reservoirs play a key role in many human soci- eties due to their capability to manage water resources. In addition to their role in water supply and hydropower pro- duction, their ability to retain water and control the flow makes them a valuable asset for flood mitigation. This is a key function, since extreme events have increased in the last few decades as a result of climate change, and therefore, the application of mechanisms capable of mitigating flood dam- age will be key in the coming decades. Having a good esti- mation of the outflow of a reservoir can be an advantage for water management or early warning systems. When histori- cal data are available, data-driven models have been proven a useful tool for different hydrological applications. In this sense, this study analyzes the efficiency of different machine learning techniques to predict reservoir outflow, namely mul- tivariate linear regression (MLR) and three artificial neu- ral networks: multilayer perceptron (MLP), nonlinear au- toregressive exogenous (NARX) and long short-term mem- ory (LSTM). These techniques were applied to forecast the outflow of eight water reservoirs of different characteristics located in the Miño River (northwest of Spain). In general, the results obtained showed that the proposed models pro- vided a good estimation of the outflow of the reservoirs, im- proving the results obtained with classical approaches such as to consider reservoir outflow equal to that of the previous day. Among the different machine learning techniques analyzed, the NARX approach was the option that provided the best estimations on average.


Thursday 1 December 2022

Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging

 Food Packaging and Shelf Life, 34, 100955, 2022


Fruits and vegetables contain excellent amounts of nutritional and bioactive compounds. The maintenance their shelf-life and prevention from decay, quality deterioration, and microbial spoilage of the fresh produce are the major challenges for food processing industries. Several techniques such as physical, chemical, and bio-preservation are used to extend the shelf-life of fresh produce. However, these techniques could not fully sustain because of their higher cost, and side-effects. In past few decades, nanotechnology came into existence, which provides a green, novel and cutting-edge solution to preserve fresh produce. Organic, inorganic, and combined engineered nanomaterials (nano-particles, nano-composites, nano-emulsion, nano-tracers, nano-packaging, and nano-sensors) are broadly used in shelf-life improvement of fresh produce because of their broad surface to volume ratio, higher barrier property, and better antimicrobial spectrum. This review comprehensively discusses various methods, components, and roles of nanotechnology for extending the shelf-life of fresh produce and scope of developing advanced packaging.


Wednesday 30 November 2022

Científicos, palangreiros e administración poñen en valor os beneficios nutricionais do consumo das grandes especies peláxicas

Presentáronse os resultados dun estudo do Grupo de Investigacións Agroambientais e Agroalimentarias sobre catro especies “ricas en proteínas de alto valor biolóxico” e ácidos graxos poliinsaturados.



A comunidade investigadora, palangreira e a administración puxeron este martes en valor os beneficios do consumo das grandes especies peláxicas, así como o efecto protector que ten o selenio fronte a contaminantes ambientais como o mercurio. Fixérono con argumentos científicos nun congreso celebrado nas instalacións da Autoridade Portuaria de Vigo e no que se presentaron os resultados do proxecto 'Beneficios do consumo das especies tiburón azul (Prionace Glauca), marraxo (Isirus oxyrinchus), peixe espada (Xiphias gladius) e atún vermello (Thunnus thynnus)', estudo realizado polo Grupo de Investigacións Agroambientais e Agroalimentarias da Universidade de Vigo, liderado polo profesor Jesús Simal, a iniciativa de Sealab, a OPP Burela (Organización de Produtores Pesqueiros do Porto de Burela), Opromar (Organización de Produtores de Pesca do Porto e Ría de Marín), Carbopesca (Organización de Produtores Pesqueros Pescadores de Carboneras) e a OPP78 (Organización de Productores Pesqueros Artesanales del Estrecho).

A inauguración do encontro estivo presidida pola conselleira do Mar, Rosa Quintana, quen destacou a importancia de desenvolver este tipo de iniciativas para difundir os beneficios nutricionais dos produtos do mar e a sustentabilidade da actividade marítimo-pesqueira. Neste liña pronunciáronse tamén os seus acompañantes de mesa, entre eles a vicerreitora de Benestar, Equidade e Diversidade, María Isabel Doval, quen destacou que desde a Universidade de Vigo se valora moito calquera acción que teña que ver co peixe, “fonte de saúde”, e coa dieta atlántica como exemplo claro de alimentación saudable. “En dieta atlántica o sur de Galicia ten moito que achegar”, subliñou a vicerreitora, quen tamén adiantou que os resultados finais do proxecto serán difundidos entre a comunidade universitaria, “sobre todo nas nosas facultades de Educación, o mellor xeito de que cheguen ás escolas e ás familias, e tamén entre as empresas concesionarias dos comedores universitarios”.

Xunto a elas participaron tamén na inauguración do congreso o presidente da Autoridade Portuaria de Vigo, Jesús Vázquez Almuiña; o director da Organización de Produtores de Pesca Fresca do Porto e Ría de Marín, Juan Carlos Martín, e o director da Organización de Produtores Pesqueiros de Burela, Sergio López.




En canto ao valor nutricional destas especies, desde o Grupo de Investigacións Agroambientais e Agroalimentarias adiantaron no congreso que estas catro especies “son ricas en proteínas de alto valor biolóxico e cun excelente perfil aminoacídico, xa que son fonte de aminoácidos esenciais, entre eles: histidina, isoleucina, leucina, lisina, treonina, triptófano, valina, fenilalanina, metionina, chegando a achegar entre o 40 e o 60% da inxesta diaria recomendada de todos os aminoácidos esenciais”, explica o profesor Miguel Ángel Prieto, membro do comité científico do congreso xunto a Jesús Simal.

Ademais, segundo explicaron os coordinadores do estudo, estas especies achegan ácidos graxos poliinsaturados, principalmente omega 3, ácido eicosapentaenoico (EPA) e ácido docosahexaenoico (DHA), que demostraron ser beneficiosos para a saúde cardiovascular. “Entre estas catro especies destaca o atún vermello, unha das que maior contido de EPA e DHA achega”, explica Prieto. Por outra banda, son fonte de vitaminas liposolubles, como as vitamina A e D, e hidrosolubles, como as vitaminas do complexo B, principalmente niacina (B3), piridoxina (B6) e cobalamina (B12). A maiores, os expertos subliñaron que estas especies destacan tamén polo seu alto contido de minerais como o Selenio (Se), Zinc (Zn), Cobre (Cu) e Manganeso (Mn).

No relativo aos posibles prexuízos derivados da posible presenza de mercurio, os investigadores da UVigo destacan que “aínda que é certo que estas especies, polo lugar que ocupan na cadea trófica e por ser especies lonxevas, acumulan máis cantidade de mercurio en comparación con especies de menor tamaño”; con todo, tamén presentan bondades nutricionais que os converten nunha opción para explorar á hora de elixir. Neste sentido, resaltan a importancia de coñecer as recomendacións de consumo realizadas polas autoridades, especificamente pola Axencia Española de Seguridade Alimentaria e Nutrición (AESAN) que recomenda para a poboación en xeral o consumo de 3–4 racións á semana de peixe procurando variar as especies entre peixes brancos e azuis. “So se fixa unha dose menor a grupos de poboación vulnerables, como os nenos entre 10 e 14 anos, onde limita o consumo destas especies a 120 g/mes, e as mulleres embarazadas ou que planeen estalo, casos nos que se desaconsella o consumo destas especies”. 




O estudo, do que ao longo desta mañá se están a presentar un primeiro avance de resultados, arrancou en febreiro de 2021 e rematará en 2023. Xira en torno a tres eixes fundamentais: realizar unha avaliación científica do valor nutricional e os beneficios do consumo destas catro especies; avaliar os datos teóricos das inxestas máximas recomendadas e os niveis máximos de mercurio permitidos, revisando o contido en mercurio de outros alimentos e comparando o risco do seu consumo; e determinar si o contido en selenio destas especies é suficiente para contrarrestar o efecto negativo do mercurio na saúde humana. Á espera das conclusión definitivas, os primeiros indicios invitan ao sector ao optimismo.

Fuente: DUVI

Wednesday 16 November 2022

IV Xornada de Concienciación sobre o uso dos antibióticos


  • Lugar: Salón de Graos do Edificio Politécnico do Campus de Ourense
  • Data: xoves, 17 de novembro de 2022
  • Hora: ás 17.00h

 

  • 17.00h Presentación
  • 17.10h O piollo do salmón: xaque á salmonicultura

Dr. Raúl Iglesias Blanco (Profesor da área de Parasitoloxía na Universidade de Vigo)

  • 17.45h Inicio do Proxecto MicroMundo@UVigo3.0: aprendizaxe-servizo para a busca de microorganismos produtores de novos antibióticos(Curso2022-2023)

Dra. Julia Carballo Rodríguez (Profesora da área de Microbioloxía e Instructora MicroMundo na Universidade de Vigo)

  • 18.15h Mesa redonda sobre a participación no proxecto MicroMundo@UVigo

Participantes: Dna. María José Rodríguez Fernandez (Tutora, IES O Couto)

Alumnado do IES O Couto

D. Tomás González Rivas (Alumno da Facultade de Ciencias)

Dna. Julia Carballo Rodríguez (Instructora, Facultade de Ciencias)

  • 19.00h Clausura

Wednesday 9 November 2022

“Ficus carica L.” and its by-products: A decade evidence of their health-promoting benefits towards the development of novel food formulations

 Trends in Food Science & Technology, 127, 1-13, 2022



Background
The food industry constantly searches for natural derived bioactive molecules with preventive and therapeutic effects using innovative and sustainable strategies. Fig production and processing generate a considerable amount of by-products (leaves, pulp, peels, seeds, and latex) with limited commercial exploitation and negative impact on the environment. These by-products are important sources of high value-added ingredients, including anthocyanins and pectins that can be of particular interest to the food industry as functional colourants, emulsifiers, and additives.

Scope and approach
This review curates recent advances in the valorisation of fig by-products as valuable sources of bioactive molecules for functional food development. Special attention was given to widely used extraction processes, main bioactive compounds, relevant biological properties, and the application of recovered bioactives for functional food development.

Key findings and conclusions
Fig by-products are essential sources of structurally diverse bioactive molecules with unique antidiabetic, anti-inflammatory, anti-tumour, immunomodulatory and cardioprotective properties. Owing to these health-promoting potentials, an integral valorisation approach involving sustainable technologies to recover these high value-added ingredients and its utilisation in novel food formulation development should be further stimulated.


Wednesday 2 November 2022

 Food Science and Human Wellness, 11(6), 1482-1490, 2022



The present study aimed at making a rational usage for European eel bone by-products by preparing Europen eel bone peptide chelated calcium (EBPC-Ca). Nutritional properties and bioactivity of EBPC-Ca were evaluated. Results showed that nutritional properties of calcium ions will cause intra- and inter-molecular folding and aggregation of peptide to uniformly form EBPC-Ca chelate. The chelated compound of EBPC and calcium ion triggered a strong apoptosis in heterogeneous human epithelial colorectal adenocarcinoma (Caco-2) in concentration- and time-dependent manners. Western blot analysis revealed that the EBPC-Ca induced apoptosis may be the result of a blocked autophagy flux through mitochondrial-dependent pathway. Additionally, the increase in FGF-23 protein expression inhibited the absorption of calcium ions and alleviated cell apoptosis. It was also found that the cell apoptosis occurs with significant increases in the levels of reactive oxygen species (ROS) and Ca2+ in the cells, indicating the anti-tumor potential of EBPC-Ca may involve multiple channels.


Tuesday 1 November 2022

Marine Macrolides to Tackle Antimicrobial Resistance of Mycobacterium tuberculosis

 Mar. Drugs 2022, 20(11), 691


Tuberculosis has become a major health problem globally. This is worsened by the emergence of resistant strains of Mycobacterium tuberculosis showing ability to evade the effectiveness of the current antimycobacterial therapies. Therefore, the efforts carried out to explore new entities from many sources, including marine, are critical. This review summarizes several marine-derived macrolides that show promising activity against M. tuberculosis. We also provide information regarding the biosynthetic processes of marine macrolides, including the challenges that are usually experienced in this process. As most of the studies reporting the antimycobacterial activities of the listed marine macrolides are based on in vitro studies, the future direction should consider expanding the trials to in vivo and clinical trials. In addition, in silico studies should also be explored for a quick screening on marine macrolides with potent activities against mycobacterial infection. To sum up, macrolides derived from marine organisms might become therapeutical options for tackling antimycobacterial resistance of M. tuberculosis.

Thursday 27 October 2022

A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications

 Materials Today, 33, 2022, 104747




Nanobiotechnology has recently gained prominence as a fundamental branch of modern science and a novel epoch in the field of material researches. Due to a wide range of applications it attracts attention of many scientists from all over the world. Bionanomaterials are prepared using a variety of physical, chemical, and biological techniques and methods. Many different metal and metal oxide nanoparticles are reported to be produced by biological systems, including bacteria, fungi, actinomycetes, yeasts, viruses, and plants. Among all of them, biocompatible zinc oxide nanoparticles (ZnO NPs), obtained through biosynthesis with the aid of plant-derived materials, appears to be a highly successful way to create a fast, clean, non-toxic, and environmentally friendly platform for the production and application of these bionanomaterials. This review focuses on the plant extract-derived ZnO NPs synthesis, with a special emphasis on the recent advances and applications of these nanomaterials.






Wednesday 26 October 2022

Influence of Casein Hydrolysates and Yeast on the Rheological Properties of Wheat Dough

 Gels 2022, 8(11), 689



The influence of casein hydrolysates (CHs) and yeast on the viscoelasticity of wheat dough at 25 °C were analysed. Three wheat doughs were studied: the unyeasted dough (UYD), the unyeasted dough with CHs (UYD-C) and the yeasted dough (YD). The characteristic parameters in the linear viscoelastic range (LVER) were analysed by stress sweep at 6.3 rad/s: UYD-C dough exhibited higher values of stress (σmax) and strain (γmax) amplitudes, and softer gel network (lower complex modulus, G*) comparing with UYD dough. The oscillatory data suggest that CHs would work as (energy and time) stabilising-agents based on the greatest reticular energy (E parameter) and the lowest frequency dependence of phase angle (δ) at the low frequency range. The rotatory tests show that CHs may act as shear thinning agents in the gluten-starch network, facilitating the solid-fluid transition at the yield point (UYD-C dough). The yeasted dough (YD) exhibited a more shear sensitive structure, evidenced in the highest influence of frequency on the elastic (G′) and viscous (G″) parameters, and gel to sol transition at 0.23 rad/s was observed.


Sunday 23 October 2022

The International Natural Product Sciences Taskforce (INPST) and the power of Twitter networking exemplified through #INPST hashtag analysis

Phytomedicine, 108, 154520, 2023




Background
The development of digital technologies and the evolution of open innovation approaches have enabled the creation of diverse virtual organizations and enterprises coordinating their activities primarily online. The open innovation platform titled “International Natural Product Sciences Taskforce” (INPST) was established in 2018, to bring together in collaborative environment individuals and organizations interested in natural product scientific research, and to empower their interactions by using digital communication tools.

Methods
In this work, we present a general overview of INPST activities and showcase the specific use of Twitter as a powerful networking tool that was used to host a one-week “2021 INPST Twitter Networking Event” (spanning from 31st May 2021 to 6th June 2021) based on the application of the Twitter hashtag #INPST.

Results and Conclusion
The use of this hashtag during the networking event period was analyzed with Symplur Signals (https://www.symplur.com/), revealing a total of 6,036 tweets, shared by 686 users, which generated a total of 65,004,773 impressions (views of the respective tweets). This networking event's achieved high visibility and participation rate showcases a convincing example of how this social media platform can be used as a highly effective tool to host virtual Twitter-based international biomedical research events.


Saturday 22 October 2022

Special Issue "Cyclodextrins: Structure, Properties and Applications"

 


Cyclodextrins (CD) are cyclic oligomers of α-d-glucopyranose that are obtained through biotechnological processes through bacterial action on starch. What was initially considered a scientific curiosity (its ability to form inclusion complexes with a great diversity of molecules) ended up being shown as the cause of its technological applicability. This means that in the last four decades there has been a progressive increase in scientific publications, review articles and patents directly related to CDs (synthesis, structure, properties, formation of host:guest complexes and applications).
In this Special Issue of Compounds, we intend to compile original scientific articles, communications and bibliographic reviews that deal precisely with cyclodextrins (both as regards their structure, their properties, and their applications).

Tuesday 18 October 2022

Personalized nutrition, microbiota, and metabolism: A triad for eudaimonia

 Front. Mol. Biosci., 2022



During the previous few years, the relationship between the gut microbiota, metabolic disorders, and diet has come to light, especially due to the understanding of the mechanisms that particularly link the gut microbiota with obesity in animal models and clinical trials. Research has led to the understanding that the responses of individuals to dietary inputs vary remarkably therefore no single diet can be suggested to every individual. The variations are attributed to differences in the microbiome and host characteristics. In general, it is believed that the immanent nature of host-derived factors makes them difficult to modulate. However, diet can more easily shape the microbiome, potentially influencing human physiology through modulation of digestion, absorption, mucosal immune response, and the availability of bioactive compounds. Thus, diet could be useful to influence the physiology of the host, as well as to ameliorate various disorders. In the present study, we have described recent developments in understanding the disparities of gut microbiota populations between individuals and the primary role of diet-microbiota interactions in modulating human physiology. A deeper understanding of these relationships can be useful for proposing personalized nutrition strategies and nutrition-based therapeutic interventions to improve human health.

Monday 17 October 2022

Global excellence in food chemistry

 Front. Nutr., 2022



The current global changes in economic, social, and technological production systems of food necessitate developing innovative solutions and strategies that ensure maximum utilization of food resources to produce desirable and wholesome food products. Food chemistry and related research activities are arguably the core of research activities that ensure the achievement of the above goals. This Research Topic is aimed at capturing prominent food chemistry research activities to provide recent insights and current research activities to meet the above goals. This Research Topic provides a balanced collection of original research, reviews, and new methods contributions, authored by experts in the field. The studies reported in the present Research Topic can be generally categorized into the following themes: food safety research that was concerned with the detection and quantification of pesticides and antimicrobial agents; studies on bioactive compounds, their stability and biofunctionalities; fractionation of pea protein, and others.

Sunday 16 October 2022

Comparison of Chromatic and Spectrophotometric Properties of White and Red Wines Produced in Galicia (Northwest Spain) by Applying PCA

Molecules 2022, 27(20), 7000



Wine is a complex matrix composed of numerous substances and color has an important influence on its quality and consumer acceptance. Color is affected by numerous factors such as pre-fermentation and fermentation operations, ageing, contact or addition of certain substances. In this study, different chromatic parameters were determined in 99 wines (58 red and 41 white) made from Galician (Northwest Spain) grape varieties. These parameters were obtained by using simple, rapid, and inexpensive spectrophotometric methodologies: color intensity, hue, total polyphenols content (Total Polyphenol Index TPI, Folin–Ciocalteu index, FCI), total anthocyans, total tannins, and color coordinates measured by the CIELab system. The influence of ageing in barrels (red wines) or using chips (white and red wines) on these parameters was also studied. A principal component analysis (PCA) was carried out to characterize the wines according to their chromatic characteristics. Application of PCA to the experimental data resulted in satisfactory classifications of studied white and red wines according to the cited enological practices.


Tuesday 11 October 2022

Advances in Fungal Phenaloenones—Natural Metabolites with Great Promise: Biosynthesis, Bioactivities, and an In Silico Evaluation of Their Potential as Human Glucose Transporter 1 Inhibitors

Molecules 2022, 27(20), 6797



Phenaloenones are structurally unique aromatic polyketides that have been reported in both microbial and plant sources. They possess a hydroxy perinaphthenone three-fused-ring system and exhibit diverse bioactivities, such as cytotoxic, antimicrobial, antioxidant, and anti-HIV properties, and tyrosinase, α-glucosidase, lipase, AchE (acetylcholinesterase), indoleamine 2,3-dioxygenase 1, angiotensin-I-converting enzyme, and tyrosine phosphatase inhibition. Moreover, they have a rich nucleophilic nucleus that has inspired many chemists and biologists to synthesize more of these related derivatives. The current review provides an overview of the reported phenalenones with a fungal origin, including their structures, sources, biosynthesis, and bioactivities. Moreover, more than 135 metabolites have been listed, and 71 references have been cited. SuperPred, an artificial intelligence (AI) webserver, was used to predict the potential targets for selected phenalenones. Among these targets, we chose human glucose transporter 1 (hGLUT1) for an extensive in silico study, as it shows high probability and model accuracy. Among them, aspergillussanones C (60) and G (60) possessed the highest negative docking scores of −15.082 and −14.829 kcal/mol, respectively, compared to the native inhibitor of 5RE (score: −11.206 kcal/mol). The MD (molecular dynamics) simulation revealed their stability in complexes with GLUT1 at 100 ns. The virtual screening study results open up a new therapeutic approach by using some phenalenones as hGLUT1 inhibitors, which might be a potential target for cancer therapy.

Saturday 8 October 2022

Royal Jelly: Beneficial Properties and Synergistic Effects with Chemotherapeutic Drugs with Particular Emphasis in Anticancer Strategies

 Nutrients 2022, 14(19), 4166


Cancer is one of the major causes of death globally. Currently, various methods are used to treat cancer, including radiotherapy, surgery, and chemotherapy, all of which have serious adverse effects. A healthy lifestyle, especially a nutritional diet, plays a critical role in the treatment and prevention of many disorders, including cancer. The above notion, plus the trend in going back to nature, encourages consumers and the food industry to invest more in food products and to find potential candidates that can maintain human health. One of these agents, and a very notable food agent, is royal jelly (RJ), known to be produced by the hypopharyngeal and mandibular salivary glands of young nurse honeybees. RJ contains bioactive substances, such as carbohydrates, protein, lipids, peptides, mineral salts and polyphenols which contribute to the appreciated biological and pharmacological activities. Antioxidant, anticancer, anti-inflammatory, antidiabetic, and antibacterial impacts are among the well-recognized benefits. The combination of RJ or its constituents with anticancer drugs has synergistic effects on cancer disorders, enhancing the drug’s effectiveness or reducing its side effects. The purpose of the present review is to emphasize the possible interactions between chemotherapy and RJ, or its components, in treating cancer illnesses.



Friday 7 October 2022

The Chemical, Microbiological and Volatile Composition of Kefir-like Beverages Produced from Red Table Grape Juice in Repeated 24-h Fed-Batch Subcultures

 Foods 2022, 11(19), 3117


The aim of this work was to study the production of kefir-like beverages via the fed-batch fermentation of red table grape juice at initial pHs of 3.99 (fermentation A) and 5.99 (fermentation B) with kefir grains during 4 repeated 24-h fed-batch subcultures. All kefir-like beverages (KLB) were characterized by low alcoholic grade (≤3.6%, v/v) and lactic and acetic acid concentrations. The beverages obtained from fermentation B had lower concentrations of sugars and higher microbial counts than the KLB obtained in fermentation A. Additionally, the KLB samples from fermentation B were the most aromatic and had the highest contents of alcohols, esters, aldehydes and organic acids, in contrast with the nonfermented juice and KLB from fermentation A. These results indicate the possibility of obtaining red table grape KLB with their own distinctive aromatic characteristics and high content in probiotic viable cells, contributing to the valorization of this fruit.

Thursday 6 October 2022

Phytochemical Profiling, Mineral Elements, and Biological Activities of Artemisia campestris L. Grown in Algeria

 Horticulturae 2022, 8(10), 914



Artemisia campestris L. is commonly used in folk medicine due to its antioxidant, antidiabetic, nutritional, and culinary properties. Our study assessed the total phenolics contents, antioxidant, and pharmacological activities of various organic extracts prepared from the aerial parts of Artemisia campestris, and its mineral elements and chemical profile were analyzed. ICP-OES was used to analyze the mineral profile and the LC-MS/MS analysis was used to characterize the phytochemical profiling. A series of antioxidant tests were carried out using DPPH, ABTS, beta-carotene, GOR, RP, CUPRAC, and O-Phenanthroline assays. In vitro potent inhibitory actions of A. campestris extracts were investigated to evaluate their anti-cholinesterase, anti-lipase and anti-diabetic activities. The photoprotective effect of the plant was measured by the sun protection factor. The most powerful inhibitor of α-amylase was AcPEE (IC50 = 11.79 ± 0.14 μg/mL), which also showed a significant butyrylcholinesterase inhibitory effect (IC50 = 93.50 ± 1.60 μg/mL). At IC50 = 23.16 ± 0.19 μg/mL, AcEAE showed the most powerful inhibitory effects on acetylcholinesterase. A. campestris was found to have a strong photoprotective ability, absorbing UV radiations with SPF values ranging from 26.07 ± 0.22 to 40.76 ± 0.11. The results showed that A. campestris extract has strong antioxidant activity in all the test samples except for the carotene bleaching assay. The LC/MS-MS results showed that AcDE, AcEAE, and AcBE identified 11 compounds belonging to Polyphenols Compounds. Our result also showed that A. campestris contains a high concentration of essential minerals, including macro-and micro-elements with their values close to the FAO’s recommended concentration. A. campestris has the capacity to improve pharmaceutical formulations, health, and medical research, due to its compositions and potent biological properties.

Tuesday 4 October 2022

Identification of novel natural drug candidates against BRAF mutated carcinoma; An integrative in-silico structure-based pharmacophore modeling and virtual screening process

 Front. Chem., 2022



The BRAF gene is responsible for transferring signals from outside of the cell to inside of the nucleus by converting a protein namely B-Raf through the RAS/MAPK pathway. This pathway contribute to cell division, proliferation, migration, and apoptotic cell death of human and animal. Mutation in this gene may cause the development of several cancers, including lung, skin, colon, and neuroblastoma. Currently, a few available drugs are being used that has developed by targeting the BRAF mutated protein, and due to the toxic side effects, patients suffer a lot during their treatment. Therefore this study aimed to identify potentially lead compounds that can target and block the expression of BRAF and subsequently inhibit the cancer. The hits were generated through the pharmacophore model-based virtual screening, molecular docking, pharmacohore model validation, ADME (absorption, distribution, metabolism, and excretion) analysis molecular dynamics (MD) simulation to find more suitable candidate against the overexpress BRAF gene. The pharmacophore based screening initially identified 14 k possible hits from online database which were further screened by ligand scout advance software to get hit compound. Based on molecular docking score of ZINC70454679 (-10.6 kcal/mol), ZINC253500968 (-9.4 kcal/mol), ZINC106887736 (-8.6 kcal/mol), and ZINC107434492 (-8.1 kcal/mol), pharmacophore feature and toxicity evaluation, we selected four possible lead compounds. The dynamic simulation with Schrodinger Maestro software was used to determine the stability of the potential lead candidates with target protein (PDB ID: 5VAM). The results showed that the newly obtained four compounds were more stable than the control ligand (Pub Chem ID: 90408826). The current results showed that the ZINC70454679, ZINC253500968, ZINC106887736, and ZINC107434492 compounds may be able to work against several cancers through targeting the BRAF overexpressed gene. To develop a novel drug candidate, however the evaluation of the web lab based experimental work are necessary to evaluate the efficiency of the each compound against the BRAF target gene.


Saturday 1 October 2022

From Tradition to Health: Chemical and Bioactive Characterization of Five Traditional Plants

Molecules 2022, 27(19), 6495



Several scientific studies have been proving the bioactive effects of many aromatic and medicinal plants associated with the presence of a high number of bioactive compounds, namely phenolic compounds. The antioxidant, anti-inflammatory, and antimicrobial capacities of these molecules have aroused high interest in some industrial sectors, including food, pharmaceuticals, and cosmetics. This work aimed to determine the phenolic profiles of the infusions and hydroethanolic extracts of five plants (Carpobrotus edulis, Genista tridentata, Verbascum sinuatum, Cytisus multiflorus, and Calluna vulgaris) that have been employed in many traditional preparations. In addition, the antioxidant, antimicrobial, anti-inflammatory, and anti-tumoral activity of each different preparation was evaluated using in vitro assays. The HPLC-DAD-ESI/MS profile revealed the presence of eighty phenolic compounds, belonging to seven different families of compounds. Regarding antioxidant properties, the hydroethanolic extract of C. edulis showed a potent effect in the TBARS assay (IC50 = 1.20 µg/mL), while G. tridentata hydroethanolic extract achieved better results in the OxHLIA test (IC50 = 76 µg/mL). For cytotoxic and anti-inflammatory results, V. sinuatum infusions stood out significantly, with GI50 = 59.1–92.1 µg/mL and IC50 = 121.1 µg/mL, respectively. Finally, C. edulis hydroethanolic extract displayed the most relevant antibacterial activity, showing MBC values of 0.25–1 mg/mL, while G. tridentata hydroethanolic extract exerted the greatest antifungal effects (MFC of 0.5–1 mg/mL). The results of this study deepen the knowledge of the phenolic profiles and also provide evidence on the bioactive properties of the species selected, which could be considered highly valuable options for research and application in several sectors, namely food, cosmetics, and pharmaceuticals.


Friday 30 September 2022

Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids- a comprehensive update

 The Journal of Nutritional Biochemistry, 110, 109147, 2022


Gout is an inflammatory disease caused by metabolic disorder or genetic inheritance. People throughout the world are strongly dependent on ethnomedicine for the treatment of gout and some receive satisfactory curative treatment. The natural remedies as well as established drugs derived from natural sources or synthetically made exert their action by mechanisms that are closely associated with anticancer treatment mechanisms regarding inhibition of xanthine oxidase, feedback inhibition of de novo purine synthesis, depolymerization and disappearance of microtubule, inhibition of NF-ĸB activation, induction of TRAIL, promotion of apoptosis, and caspase activation and proteasome inhibition. Some anti-gout and anticancer novel compounds interact with same receptors for their action, e.g., colchicine and colchicine analogues. Dietary flavonoids, i.e., chrysin, kaempferol, quercetin, fisetin, pelargonidin, apigenin, luteolin, myricetin, isorhamnetin, phloretinetc etc. have comparable IC50 values with established anti-gout drug and effective against both cancer and gout. Moreover, a noticeable number of newer anticancer compounds have already been isolated from plants that have been using by local traditional healers and herbal practitioners to treat gout. Therefore, the anti-gout plants might have greater potentiality to become selective candidates for screening of newer anticancer leads.


Monday 26 September 2022

Biological Functions and Utilization of Different Part of the Papaya: A Review

 Food Rev. Int. 2022

Papaya is one of the most important fruit trees cultivated throughout the tropical and subtropical regions and its production is rising worldwide. Its edible part has a high nutritional and sensory value and a great commercial potential. Mature papaya is consumed fresh and has been used in food processing and cosmetic industries. Along with some other parts such as leaves, seeds or skin, papaya has been used in traditional medicine in various countries. In fact, numerous studies have reported the presence of bioactive compounds with diverse biological properties in the papaya by-products, which has motivated the expansion of their applications. Papaya by-products have been demonstrated to exert a wide range of activities (e.g.; antioxidant, anti-cancer, anti-dengue, anti-malarial, anti-fertility, diabetes prevention, insecticidal, anti-AIDS) that could be useful in pharmaceutical industry. They could be used in food industry, as a source of functional compounds and in innovative active packaging strategies, and in different cosmetic products, among other applications. Although this scenario indicates that the papaya industry could diversify and increase its economic value, there are two problems that significantly affect it: the spread of pathogens and the highly perishable nature of this fruit. On the one hand, genetic tools have been used to obtain transgenic varieties resistant to pathogens, while new preservation technologies have been explored. This review focuses on the main bioactive compounds, important physiological functions and applications of different papaya parts and also in the current development of genetically modified papaya in the industry and the research progress on storage and preservation.

Thursday 22 September 2022

Polyphenols as possible alternative agents in chronic fatigue: a review

Phytochemistry Reviews, 2022




Chronic fatigue syndrome (CFS) is a pathological state of extreme tiredness that lasts more than six months and may possess an impact on the social, emotional, or occupational functioning of an individual. CFS is characterized by profound disabling fatigue associated with infectious, rheumatological, and neurological symptoms. The current pharmacological treatment for CFS does not offer a complete cure for the disease, and none of the available treatments show promising results. The exact mechanism of the pathogenesis of the disease is still unknown, with current suggestions indicating the overlapping roles of the immune system, central nervous system, and neuroendocrine system. However, the pathological mechanism revolves around inflammatory and oxidative stress markers. Polyphenols are the most abundant secondary metabolites of plant origin, with potent antioxidant and anti-inflammatory effects, and can exert protective activity against a whole range of disorders. The current review is aimed at highlighting the emerging role of polyphenols in CFS from both preclinical and clinical studies. Numerous agents of this class have shown promising results in different in vitro and in vivo models of chronic fatigue/CFS, predominantly by counteracting oxidative stress and the inflammatory cascade. The clinical data in this regard is still very limited and needs expanding through randomized, placebo-controlled studies to draw final conclusions on whether polyphenols may be a class of clinically effective nutraceuticals in patients with CFS.


Friday 16 September 2022

Enrichment of gamma-aminobutyric acid in foods: From conventional methods to innovative technologies

 Food Res. Int. 162, Part A, 111801, 2022


Gamma-aminobutyric acid (GABA), a non-protein amino acid, possesses various health benefits and plays a signaling and defensive role in plants. Due to the low content of GABA in plant foods, scientists have made great efforts to enrich GABA in foods using various chemical, physical, and biological methods, including anaerobic treatment, cold, salt treatment, germination, microbial fermentation, crossbreeding, and innovative technologies such as ultrasound, ultraviolet, high pressure, etc. To effectively increase GABA in different foods, it is crucial to understand the underlying mechanisms and the virtues and limitations of different enrichment methods that are suitable for different foods. In this paper, we aimed to comprehensively review the recent progress on both conventional and innovative enrichment methods, the advantages and disadvantages, the associated mechanisms, and the applicable foods of these methods. We also summarized the functions of GABA in plants and microorganisms, the factors influencing GABA enrichment, the patents related to GABA enrichment, and the functional foods rich in GABA. The mechanisms of GABA enrichment mainly include modification of cell microstructure; influencing H+ and Ca2+ concentration and enzyme configuration, thereby activating glutamate decarboxylase; and regulation of gene and protein expression of enzymes involved in GABA biosynthesis and metabolism. This review will provide significant information on the production of GABA-enriched foods.



Wednesday 14 September 2022

Himalayan Wild Fruits as a Strong Source of Nutraceuticals, Therapeutics, Food and Nutrition Security

 Food Rev. Int. 2022


The Himalayan region supports a wide diversity of flora and fauna; hence it is home to many natural resources. Despite this, the people living here are struggling for essential needs such as food and nutrition. However, in Himalayan region, wild plants and their fruits contribute significantly to the livelihood of local people and communities. Several studies recommended that Himalayan wild fruits possess significant biologically active compounds, antioxidants, vitamins and minerals. In addition, the presence of secondary metabolites in these plants gives them a prominent place in traditional medicinal systems. However, detailed investigation of health-promoting effects, chemical composition, and nutraceutical profiling is lacking in the variety of Himalayan wild fruits. Therefore, this review article will explore the information about wild edible fruits, such as health-promoting effects, chemical composition, and nutraceutical profiling in the Himalayan region. In this context, a detailed search was done through different search engines including Scopus, PubMed, Web of Science, Science Direct and Google Scholar. Specific keywords were used to explore available data about Himalayan wild fruits. Several Himalayan wild fruits like Berberis asiatica, Celtis australis, Ficus palmata, Fragaria indica, Morus alba, Myrica esculenta, Phyllanthus emblica, Prunus armeniaca, etc. showed presence of important bioactive compounds responsible for different therapeutic activities such as anti-inflammatory, anti-diabetic, anticancer, cardioprotective, neuroprotective, antimicrobial, etc. These fruits also possess high nutraceutical value. Hence this study presents detailed information about wild edible fruits which will be helpful in future for researchers, food industries, pharmaceutical industries, and several other government and non-government organisations in developing strategies to ensure food security by using these important wild fruits.


Tuesday 13 September 2022

Single-Cell Proteins Obtained by Circular Economy Intended as a Feed Ingredient in Aquaculture

 Foods 2022, 11(18), 2831


The constant increment in the world’s population leads to a parallel increase in the demand for food. This situation gives place the need for urgent development of alternative and sustainable resources to satisfy this nutritional requirement. Human nutrition is currently based on fisheries, which accounts for 50% of the fish production for human consumption, but also on agriculture, livestock, and aquaculture. Among them, aquaculture has been pointed out as a promising source of animal protein that can provide the population with high-quality protein food. This productive model has also gained attention due to its fast development. However, several aquaculture species require considerable amounts of fish protein to reach optimal growth rates, which represents its main drawback. Aquaculture needs to become sustainable using renewable source of nutrients with high contents of proteins to ensure properly fed animals. To achieve this goal, different approaches have been considered. In this sense, single-cell protein (SCP) products are a promising solution to replace fish protein from fishmeal. SCP flours based on microbes or algae biomass can be sustainably obtained. These microorganisms can be cultured by using residues supplied by other industries such as agriculture, food, or urban areas. Hence, the application of SCP for developing innovative fish meal offers a double solution by reducing the management of residues and by providing a sustainable source of proteins to aquaculture. However, the use of SCP as aquaculture feed also has some limitations, such as problems of digestibility, presence of toxins, or difficulty to scale-up the production process. In this work, we review the potential sources of SCP, their respective production processes, and their implementation in circular economy strategies, through the revalorization and exploitation of different residues for aquaculture feeding purposes. The data analyzed show the positive effects of SCP inclusion in diets and point to SCP meals as a sustainable feed system. However, new processes need to be exploited to improve yield. In that direction, the circular economy is a potential alternative to produce SCP at any time of the year and from various cost-free substrates, almost without a negative impact.



Wednesday 31 August 2022

Pirfenidone and post-Covid-19 pulmonary fibrosis: invoked again for realistic goals

 Inflammopharmacology, 30, 2017–2026 (2022)



Pirfenidone (PFN) is an anti-fibrotic drug with significant anti-inflammatory property used for treatment of fibrotic conditions such as idiopathic pulmonary fibrosis (IPF). In the coronavirus disease 2019 (Covid-19) era, severe acute respiratory syndrome 2 (SARS-CoV-2) could initially lead to acute lung injury (ALI) and in severe cases may cause acute respiratory distress syndrome (ARDS) which is usually resolved with normal lung function. However, some cases of ALI and ARDS are progressed to the more severe critical stage of pulmonary fibrosis commonly named post-Covid-19 pulmonary fibrosis which needs an urgent address and proper management. Therefore, the objective of the present study was to highlight the potential role of PFN in the management of post-Covid-19 pulmonary fibrosis. The precise mechanism of post-Covid-19 pulmonary fibrosis is related to the activation of transforming growth factor beta (TGF-β1), which activates the release of extracellular proteins, fibroblast proliferation, fibroblast migration and myofibroblast conversion. PFN inhibits accumulation and recruitment of inflammatory cells, fibroblast proliferation, deposition of extracellular matrix in response to TGFβ1 and other pro-inflammatory cytokines. In addition, PFN suppresses furin (TGFβ1 convertase activator) a protein effector involved in the entry of SARS-CoV-2 and activation of TGFβ1, and thus PFN reduces the pathogenesis of SARS-CoV-2. Besides, PFN modulates signaling pathways such as Wingless/Int (Wnt/β-catenin), Yes-Associated Protein (YAP)/Transcription Co-Activator PDZ Binding Motif (TAZ) and Hippo Signaling Pathways that are involved in the pathogenesis of post-Covid-19 pulmonary fibrosis. In conclusion, the anti-inflammatory and anti-fibrotic properties of PFN may attenuate post-Covid-19 pulmonary fibrosis.


Tuesday 30 August 2022

Comparative study on the phenolic composition and in vitro bioactivity of medicinal and aromatic plants from the Lamiaceae family

 Food Res. Int. 161, 111875, 2022


Medicinal and aromatic plants (MAP) have been described as a source of phenolic compounds with potential as antioxidant, antiproliferative and antimicrobial agents. MAP from the Lamiaceae family (Origanum vulgare L., Thymus vulgaris L., Ocimum basilicum L., Salvia officinalis L., Melissa officinalis L., and Matricaria chamomilla L.) were selected to perform a phytochemical and biological screening for their further exploitation as natural bioactive ingredients. The total content of phenolic compounds varied from 184.02 mg/g extract in M. officinalis to 17.97 mg/g extract in M. chamomilla. Caffeic and rosmarinic acids were the main phenolic acids found in the respective hydroalcoholic extracts. The extracts showed a promising antioxidant activity in vitro, being related the phenolic compositions of the extracts, furthermore, all extracts being able to combat lipid peroxidation in TBARS assays with an IC50 under 26 μg/mL, moreover all the plant extract has prevented the oxidative haemolysis in OxHLIA assays at concentrations below 67 μg/mL in a Δt 60 min and under 118 μg/mL for a Δt 120 min. Regarding to the bactericidal and fungicidal action the plant extracts were able to inhibit growth against bacteria associated with food hazards, such as Salmonella typhimurium (MIC < 1) and Listeria monocytogenes (MIC < 1), regarding to fungicidal activity it can be highlighted the MIC values under to 0.25 for Aspergillus versicolor and Trichoderma viride. Overall, the selected Lamiaceae plants stood out as a source of active phytochemicals that can be used by different industries, such as food and cosmetics.



Thursday 25 August 2022

The Nutritional and Bioactive Components, Potential Health Function and Comprehensive Utilization of Pomegranate: A Review

 Food Rev. Int. 2022


Pomegranate is native to the region between Iran and northern India, as well as cultivated in China with a large planting area and a variety of high-quality species. Pomegranate not only has delicious fruits and beautiful flowers, but it is rich in bioactive compounds with benefits to human health.The distribution and content of bioactive components in different organs and by-products of pomegranate have distinct characteristics. A variety of phenols, flavonoids, and triterpenoids exist in pomegranate peels and flowers, whereas the active ingredients in the leaves are mainly tannins. Arils and seeds are good sources of anthocyanins and unsaturated fatty acids, respectively. Pomegranate possesses antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-cardiovascular, anti-pathogenic and skin care effects, among others. It is also widely used in food, health care, medicinal, and ornamental purposes. This review summarizes recent research progress on pomegranate, putting forward some innovative applications for the development and utilization of pomegranate resources. This review also provides a theoretical basis for the research and industrialization of pomegranate, as well as a reference for further development of pomegranate germplasm resources.


Tuesday 23 August 2022

Hepatoprotective Mechanism of Ginsenoside Rg1 against Alcoholic Liver Damage Based on Gut Microbiota and Network Pharmacology

 Oxidative Medicine and Cellular Longevity, 2022, 5025237




Alcoholic liver disease (ALD) is a major public health problem worldwide, which needs to be effective prevention. Ginsenoside Rg1 (GRg1), a bioactive ingredient extracted from ginseng, has benefit effects on health. In this study, 11 potential targets of GRg1 against ALD were firstly obtained by network pharmacology. KEGG pathway enrichment showed that GRg1-target-ALD was closely related to Toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signaling pathways. In addition, GRg1 decreased antioxidant levels and increased oxidative levels in alcohol-treated mice, which alleviated oxidative stress-induced hepatic damage. GRg1 enhanced intestinal barrier function via upregulating the levels of tight junction protein and immunoglobulin A. GRg1 also reduced alcohol-induced inflammation by suppressing TLR4/NF-κB pathway, which was consistent with the prediction of network targets. Moreover, GRg1 altered GM population, and Verrucomicrobia, Bacteroidetes, Akkermansia, Bacteroides, Lachnospiraceae_NK4A136_group, and Alloprevotella played positive association with intestinal barrier indicators and negative correlation with hepatic inflammation biomarkers. The results suggest that GRg1 administration might be a promising strategy for protection of alcohol-induced liver damage.

Wednesday 10 August 2022

Metabolomics approach reveals high energy diet improves the quality and enhances the flavor of black Tibetan sheep meat by altering the composition of rumen microbiota

 Front. Nut. 2022


This study aims to determine the impact of dietary energy levels on rumen microbial composition and its relationship to the quality of Black Tibetan sheep meat by applying metabolomics and Pearson's correlation analyses. For this purpose, UHPLC-QTOF-MS was used to identify the metabolome, whereas 16S rDNA sequencing was used to detect the rumen microbiota. Eventually, we observed that the high energy diet group (HS) improved the carcass quality of Black Tibetan sheep and fat deposition in the longissimus lumborum (LL) compared to the medium energy diet group (MS). However, HS considerably increased the texture, water holding capacity (WHC), and volatile flavor of the LL when compared to that of MS and the low energy diet group (LS). Metabolomics and correlation analyses revealed that dietary energy levels mainly affected the metabolism of carbohydrates and lipids of the LL, which consequently influenced the content of volatile flavor compounds (VOCs) and fats. Furthermore, HS increased the abundance of Quinella, Ruminococcus 2, (Eubacterium) coprostanoligenes, and Succinivibrionaceae UCG-001, all of which participate in the carbohydrate metabolism in rumen and thus influence the metabolite levels (stachyose, isomaltose, etc.) in the LL. Overall, a high-energy diet is desirable for the production of Black Tibetan sheep mutton because it improves the mouthfeel and flavor of meat by altering the composition of rumen microbiota, which influences the metabolism in the LL.



Monday 1 August 2022

Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective

 Science of the Total Environment, 821, 153472. 2022


Background

Antibiotic resistance is one of the current threats to human health, forcing the use of drugs that are more noxious, costlier, and with low efficiency. There are several causes behind antibiotic resistance, including over-prescription of antibiotics in both humans and livestock. In this scenario, researchers are shifting to new alternatives to fight back this concerning situation.


Scope and approach

Nanoparticles have emerged as new tools that can be used to combat deadly bacterial infections directly or indirectly to overcome antibiotic resistance. Although nanoparticles are being used in the pharmaceutical industry, there is a constant concern about their toxicity toward human health because of the involvement of well-known toxic chemicals (i.e., sodium/potassium borohydride) making their use very risky for eukaryotic cells.


Key findings and conclusions

Multiple nanoparticle-based approaches to counter bacterial infections, providing crucial insight into the design of elements that play critical roles in the creation of antimicrobial nanotherapeutic drugs, are currently underway. In this context, plant-based nanoparticles will be less toxic than many other forms, which constitute promising candidates to avoid widespread damage to the microbiome associated with current practices. This article aims to review the actual knowledge on plant-based nanoparticle products for antibiotic resistance and the possible replacement of antibiotics to treat multidrug-resistant bacterial infections.

Tuesday 26 July 2022

Advances on Natural Abietane, Labdane and Clerodane Diterpenes as Anti-Cancer Agents: Sources and Mechanisms of Action

Molecules 2022, 27(15), 4791



Extensive research over the past decades has identified numerous phytochemicals that could represent an important source of anti-cancer compounds. There is an immediate need for less toxic and more effective preventive and therapeutic strategies for the treatment of cancer. Natural compounds are considered suitable candidates for the development of new anti-cancer drugs due to their pleiotropic actions on target events with multiple manners. This comprehensive review highlighted the most relevant findings achieved in the screening of phytochemicals for anticancer drug development, particularly focused on a promising class of phytochemicals such as diterpenes with abietane, clerodane, and labdane skeleton. The chemical structure of these compounds, their main natural sources, and mechanisms of action were critically discussed.