Journal of Soils and Sediments (2016) 16, 1825–1839
DOI: 10.1007/s11368-016-1395-4
The objectives of this study were to investigate the abundance and composition of the superficial biofilm on the bed sediments of the Anllóns River (NW Spain), to evaluate the relationships between biochemical parameters and biological methods based on identification and counting, and to explore the relationships between biofilm growth and the properties of the sedimentary habitat, mainly the trophic state.
Bed sediment samples (0–5 cm) were collected in two different seasons (winter and summer) at four sampling sites along the river course. Physicochemical properties of pore waters and sediments were determined. Biological properties included the determination of dehydrogenase activity (DHA) and phytopigment (Chl a Chl b and total carotenoids) concentrations, as well as taxonomic identification. For taxonomic identification, two sampling methods were compared: the Pasteur pipette method and a mini-corer method. Total and relative algal abundances (TA and RA, respectively) and genus richness were calculated. The relationships between the different variables were examined using Pearson correlations and principal component analysis.
The main taxa belonged to Chlorophyta, Cyanophyta, Euglenophyta, and Heterokontophyta. The most abundant class was Bacillariophyceae, which represents >86 % of the total abundances in the superficial sediments. The highest total algal abundance and genus richness were observed in summer at the river mouth, where DHA and phytopigment concentrations were also the highest. The statistical analysis revealed positive correlations between TA and the biochemical parameters (DHA and phytopigments) as well as positive relationships of these three parameters with the physicochemical properties of the sediments, such as electrical conductivity, and the concentrations of fine particles, C, N, S, and total P.
The results of this study reveal the positive relationships between the biochemical properties (phytopigments and respiratory activity) and total algal abundances determined by taxonomic identification and counting. All of these properties presented evidence of a clear influence of the nutrients and organic matter contents of the sediments, pointing to the importance of the site conditions, particularly the trophic state, in the development of benthic microflora.