Environmental Science and Pollution Research (2016) 23, 14676–14685
DOI: 10.1007/s11356-016-6959-8
We used batch-type experiments to study F sorption/desorption on a forest soil, a vineyard soil, pyritic material, granitic material, finely and coarsely ground mussel shell, mussel shell calcination ash, oak wood ash, pine-sawdust, slate processing fines, and three different mixtures that included three components: sewage sludge, mussel shell ash, and calcined mussel shell or pine wood ash. The three waste mixtures, forest soil, pyritic material, and shell ash showed high sorption capacity (73–91 % of added F) and low desorption, even when 100 mg F L−1 was added. All these materials (and to a lower extent wood ash) could be useful to remove F from polluted media (as certain soils, dumping sites, and contaminated waters). The vineyard soil, the granitic material, mussel shell, slate fines, and pine-sawdust were less effective in F removal. In most cases, sorption data fitted better to the Freundlich than to the Langmuir equation. These results can be useful to program the correct management of the soils, by-products, and waste materials assayed, mostly in situations where F concentrations are excessive and F removal should be promoted.